• Title/Summary/Keyword: Energy extraction

Search Result 875, Processing Time 0.025 seconds

The Study on Prediction of Hot Water Extraction in a Thermal Energy Storage System (축열시스템의 온수이용 예측에 관한 연구)

  • Cho, W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.71-80
    • /
    • 1998
  • In thermal energy storage system, energy collected from many types of heat source is stored in a storage tank and then supply to load for demand. Lately, practical use of thermal energy storage system and attention to essential use of energy have been increased. From this point of view, especially, a study about the energy extraction process from a storage tank is necessary. So in this study, useful rate of hot water and hot water extraction efficiency was analysed respect to dynamic and geometric parameters dominating the hot water extraction process.

  • PDF

Estimation of Wave Energy Extraction Efficiency for a Compact Array System of Small Buoys (밀집 배열 부이시스템의 파랑에너지 추출 효율 추정)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • A compact array system of small buoys is used for wave energy extraction. To evaluate the performance of this system, hydrodynamic analysis is carried out in regular waves using the higher order boundary element method. The motion response of each buoy is calculated considering hydrodynamic interactions caused by other buoys. The effect of energy extraction device is modeled as a linear damping load. The efficiencies of energy conversion are compared using the various sizes and arrangements of the array system and the damping coefficients for energy extraction. The increase in size or the packing ratio of the system gives better efficiency. However, the wave condition and the cost for the system should be considered to optimize performance from the perspective of engineering and economics. The proposed nondimensionalized damping coefficient for energy extraction is 0.1~0.5.

Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety

  • Wu, Hao;Kim, Seong-Yun;Takahashi, Tadayuki;Oosugi, Haruka;Ito, Tatsuya;Kanie, Kiyoshi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1218-1223
    • /
    • 2021
  • A hydrophobic ionic liquid including an amino moiety ([DiOcAPmim][NTf2]) was synthesized. Its extraction behaviors towards Pd(II), Ru(III), Rh(III) were investigated in nitric acid aqueous solution as a function of contact time, effect of concentration of nitric acid, effect of temperature, and effect of co-existing metal ions. The extraction kinetics of Pd(II) was fairly fast and extraction equilibrium can be attained within only 5 min under the [HNO3] = 2.05 M. When [HNO3]< 1 M, the extraction percentage of Pd(II), Ru(III), Rh(III) were all above 80%. When [HNO3] reached 2 M, all of the extraction percentage decreased and in an order of Pd(II)>Ru(III)>Rh(III). When [HNO3]> 2 M, the extraction performance gradually recovered. The effect of temperature can slightly affect the extraction performance of Pd(II). Furthermore, in simulated high-level liquid waste, [DiOcAPmim][NTf2] showed a better preference towards Pd(II) under the interference of various other co-existing metal ions.

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

Oil Extraction from Nannochloropsis oceanica Cultured in an Open Raceway Pond and Biodiesel Conversion Using SO42-/HZSM-5 (Open raceway pond에서 배양된 Nannochloropsis oceanica로부터 오일 추출 및 SO42-/HZSM-5를 이용한 바이오디젤 전환)

  • Ji-Yeon Park;Joo Chang Park;Min-Cheol Kim;Deog-Keun Kim;Hyung-Taek Kim;Hoseob Chang;Jun Cheng;Weijuan Yang
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, microalgal oil was extracted from Nannochloropsis oceanica cultured in an open raceway pond and converted into biodiesel using a solid acid catalyst. Microalgal oil was extracted from two types of microalgae with and without nitrogen starvation using the KOH-solvent extraction method and the fatty acid content and oil extraction yield from each microalgae were compared. The fatty acid content of N. oceanica was 184.8 mg/g cell under basic conditions, and the oil content increased to 340.1 mg/g under nitrogen starvation conditions. Oil extraction yields were 90.8 and 95.4% in the first extraction, and increased to 97.5 and 98.8% after the second extraction. Microalgal oil extracted by KOH-solvent extraction was yellow in color and had reduced viscosity due to chlorophyll removal. In biodiesel conversion using the catalyst SO42-/HZSM-5, solvent-extracted oil showed a FAME content of 4.8%, while KOH-solvent-extracted oil showed a FAME content of 90.4%. Solid acid catalyst application has been made easier by removal of chlorophyll from microalgal oil. The FAME content increased to 96.6% upon distillation, and the oxidation stability increased to 11.07 h with addition of rapeseed biodiesel and 1,000 ppm butylated hydroxyanisole.

A Study on the Calcium Ion Extraction for PCC Production (PCC 제조를 위한 칼슘이온 추출 조건에 관한 연구)

  • Lee, Ye-Hwan;Lee, Sang Hyun;Hwang, In-Hyuck;Choi, Sung-Yeol;Lee, Sang Moon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2018
  • In this study, we performed various extraction condition experiments such as types and concentrations of extractants, amounts of extraction sources, pretreatment processes, to optimize the calcium ion extraction for precipitated calcium carbonate (PCC) production. CaO was used as a calcium extraction source, The extraction amount of calcium ions and the particle size of CaO were determined by ICP and SEM results. As a result, 100% calcium ion was extracted when 2 M hydrochloric acid was used as an extractant, and the optimum amount of the extraction source was 6 g. On the other hand, it was confirmed that the reaction time, reaction temperature, particle milling and heat treatment process had no significant effect on the calcium ion extraction amount.

A Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 연구)

  • Yang, Chang-Jo;Choi, M.S.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.309-309
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%.

  • PDF

Image Feature Extraction Using Energy field Analysis (에너지장 해석을 통한 영상 특징량 추출 방법 개발)

  • 김면희;이태영;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.404-406
    • /
    • 2002
  • In this paper, the method of image feature extraction is proposed. This method employ the energy field analysis, outlier removal algorithm and ring projection. Using this algorithm, we achieve rotation-translation-scale invariant feature extraction. The force field are exploited to automatically locate the extrema of a small number of potential energy wells and associated potential channels. The image feature is acquired from relationship of local extrema using the ring projection method.

  • PDF

Thermodynamic Analysis of the Extraction Process and the Cold Energy Utilization of LNG (LNG추출과정과 냉열이용의 열역학적 해석)

  • Lee, G.S.;Chang, Y.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.120-131
    • /
    • 1995
  • Thermodynamic analysis of extraction process from the constant pressure LNG(Liquefied Natural Gas) vessel was performed in this study. LNG was assumed as a binary mixture of 90% methane and 10% ethane by mole fraction. The thermodynamic properties such as temperature, composition, specific volume and the amount of cold energy were predicted during extraction process. Pressure as a parameter ranges from 101.3kPa to 2000kPa. The result shows the peculiar phenomena for the LNG as a mixture. Both vapor and liquid extraction processes were investigated by a computer model. The property changes are negligible in the liquid extraction process. For the vapor extraction process, the temperature in the vessel increases rapidly and the extracted composition of methane decreases rapidly near the end of extracting process. Specific volume of vapor has the maximum and that of liquid has the minimum during the process. When pressure is increased, specific volume of vapor decreases and that of liquid increases. It was found that specific volume of vapor phase had a major effect on the heat absorption at constant pressure during vapor extraction process. If the pressure of the vessel increases, the total cold energy which can be utilized from LNG decreased.

  • PDF

PREDICTION OF A MUTUAL SEPARATION OF ACTINIDE AND RARE EARTH GROUPS IN A MULTISTAGE REDUCTIVE EXTRACTION SYSTEM

  • Yoo, Jae-Hyung;Lee, Han-Soo;Kim, Eung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.663-672
    • /
    • 2007
  • The mutual separation behavior of actinides and rare earths in a countercurrent multistage reductive extraction system was predicted by computer calculation. The distribution information for actinides and rare earths in the reductive extraction systems of LiCl-KCl/Cd and LiCl-KCl/Bi was collected from literature and then it was used for the calculation of a multistage extraction. The results of the concentration profiles throughout the extraction cascade, recovery yields of various metal solutes, and separation factors between the actinides and rare earths were calculated. The effects of the major process parameters, such as reducing agent content in the metal phase, number of stages, and salt/metal flow ratio, etc., on the extraction behavior were also examined.