• Title/Summary/Keyword: Energy efficient building

Search Result 378, Processing Time 0.023 seconds

Daily Cooling Performance Comparison of a Geothermal Heat Pump System between Energy-Pile and Energy-Slab (에너지파일과 에너지슬래브 적용 지열원 열펌프 시스템의 일일 냉방 운전 특성 비교)

  • Choi, Jong-Min;Park, Yong-Jung;Kang, Shin-Hyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.29-35
    • /
    • 2012
  • Geothermal heat pump system has been spotlighted as an efficient building energy system, because it has great potentials for reducing energy in building air conditioning and reducing $CO_2$ emissions. However, higher initial cost is a barrier to the promotion of its use. Energy-pile and energy-slab are known as low cost ground heat exchangers comparing with conventional ground heat exchangers, because they utilize building structures as ground heat exchangers. This paper presents the daily cooling performance of a geothermal heat pump system with energy-pile and energy-slab. The energy-piles and the energy-slabs are connected to heat pump units in parallel. The cooling capacity of the system was nearly constant due to the stability of the ground heat exchangers. The stability of the energy-pile was a little higher than that of the energy-stab as a heat sink.

Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings (마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

A study on the Estimation of Standard Heating City Gas Consumption of Apartment Housing (공동주택의 난방용 도시가스 표준사용량 산정에 관한 연구)

  • Shim, Yun-Hee;Choi, Chang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.89-97
    • /
    • 2006
  • Our Housing culture continuously changes for the correspondence to social development and changes of economy, and be developing. A massive apartment complex continuously increased, and According to this in our country heating energy consumption of a residential building is continuously increasing at country me whom was limited in order to raise efficient residential land use and diffusion ratio of house. If confirm an element to be able to reduce use of a heating energy, and there is saving possibility to parts of energy saving, this study will present the standard amount used with bases to the gas amount used for heating and Field Test data about room temperature. Execute simulation with building balance (public area, a plain), the gas amount useds such as incense of a building, indoor setting temperature ($^{\circ}C$), a position of an apartment house etc. to affect the energy amount used of a valuation object building of a variable through Field Test and research on the actual condition. Calculate the standard amount used of city gas for winter season heating of a comparative analysis apartment house to data value getting the above results through Field Test and simulations with bases.

A Pilot Project on the Integrated System Design for Developing the Sustainable Housing Model (친환경 공동주택 구현을 위한 저에너지 설비시스템 통합설계 방안 및 파일럿 프로젝트 계획)

  • Cho, Jin-Kyun;Sung, Jae-Ho;Shin, Seon-Joon;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1049-1054
    • /
    • 2009
  • Sustainable housing design can contribute to dramatically reduced energy usage and can be applied to all new building projects. This paper explores the potential in Korea of applying available energy efficient building technologies. The objective was to determine the degree of energy reduction that can easily be achieved in new building design. The pilot project is providing some prototypes with display units which incorporate principles of sustainable design and performance utilizing the eco-design objectives. This building challenges ingrained preconceptions about system designs for four energy saving levels(40%, 60%, 80% and zero energy) and exposes barriers to low energy buildings posed by new standards and guidelines.

  • PDF

Thermal Performance of TI-wall System (투과형단열재 부착 건물외피구조체의 열성능)

  • Yoon, Yong-Jin;Kim, Hea-Jeong;Kim, Byoung-Soo
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.121-128
    • /
    • 2004
  • One of the most weak parts for energy loss through the whole building components are building envelopes. Lots of technbologies to increase the thermal performance of building envelopes have been introduced in recent years. Transparent insulation is a new technology for building insulation and has function both solar transmittance and thermal insulation. This study has been carried out to develope the transparent insulation panels and TI-wall system and to analyze the thermal performance of TI-wall system by experiments using test-cell and dynamic energy simulation program ESP-r 9.0. This system is regarded as a efficient building envelope system suitable for to reduce the heating and cooling load of the buildings in our country.

Toward residential building energy conservation through the Trombe wall and ammonia ground source heat pump retrofit options, applying eQuest model

  • Ataei, Abtin;Dehghani, Mohammad Javad
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.107-120
    • /
    • 2016
  • The aim of this research is to apply the eQuest model to investigate the energy conservation in a multifamily building located in Dayton, Ohio by using a Trombe wall and an ammonia ground source heat pump (R-717 GSHP). Integration of the Trombe wall into the building is the first retrofitting measure in this study. Trombe wall as a passive solar system, has a simple structure which may reduce the heating demand of buildings significantly. Utilization of ground source heat pump is an effective approach where conventional air source heat pump doesn't have an efficient performance, especially in cold climates. Furthermore, the type of refrigerant in the heat pumps has a substantial effect on energy efficiency. Natural refrigerant, ammonia (R-717), which has a high performance and no negative impacts on the environment, could be the best choice for using in heat pumps. After implementing the eQUEST model in the said multifamily building, the total annual energy consumption with a conventional R-717 air-source-heat-pump (ASHP) system was estimated as the baseline model. The baseline model results were compared to those of the following scenarios: using R-717 GSHP, R410a GSHP and integration of the Trombe wall into the building. The Results specified that, compared to the baseline model, applying the R-717 GSHP and Trombe wall, led to 20% and 9% of energy conservation in the building, respectively. In addition, it was noticed that by using R-410a instead of R-717 in the GSHP, the energy demand increased by 14%.

Parametric study for buildings with combined displacement-dependent and velocity-dependent energy dissipation devices

  • Pong, W.S.;Tsai, C.S.;Chen, Ching-Shyang;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.85-98
    • /
    • 2002
  • The use of supplemental damping to dissipate seismic energy is one of the most economical and effective ways to mitigate the effects of earthquakes on structures. Both displacement-dependent and velocity-dependent devices dissipate earthquake-induced energy effectively. Combining displacement-dependent and velocity-dependent devices for seismic mitigation of structures minimizes the shortcomings of individual dampers, and is the most economical solution for seismic mitigation. However, there are few publications related to the optimum distributions of combined devices in a multiple-bay frame building. In this paper, the effectiveness of a building consisting of multiple bags equipped with combined displacement-dependent and velocity-dependent devices is investigated. A four-story building with six bays was selected as an example to examine the efficiency of the proposed combination methods. The parametric study shows that appropriate arrangements of different kinds of devices make the devices more efficient and economical.

A Study on the Economic Analysis of Cooling-Heating System Using Ground Source Heat in a public library (공공도서관에 지열시스템 적용시 경제성에 관한 연구)

  • Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.56-66
    • /
    • 2012
  • This study evaluated the economic benefits by comparing Cooling-Heating System with the existing system in the public library. The building's annual energy consumption was measured by adding the figures of the absorber chillers, the air conditioners and heaters in the building. The total amount of annual energy consumption was 143.51RT in air-conditioning and 83.66RT in heating. So, We made the capacity of geothermal heat pumps three 50RTs in order to check up this system. In order to estimate each construction and equipment cost and to evaluate economical efficiency, LCC(Life Cycle Cost) method was used and the service life of the building was sixty years. The result of analysis was that the geothermal cooling-heating system was more efficient than the existing system in public library.

Surface temperatures of public buildings, built in 1880, 1970 and 2002, in Northern Greece

  • Kosmopoulos, P.;Kantzioura, A.
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.79-95
    • /
    • 2013
  • The purpose of this paper is to investigate the surface temperatures of the shelter of three public buildings in the city of Xanthi, in northern Greece. The buildings were built in different time periods and consequently they have different technical characteristics. Respectively, we survey the three following buildings that have been built in 1880 (Municipality Hall of Xanthi), in 1970 (Municipality Amphitheatre) and in 2002 (Bank offices building). Data have been gathered by the use of thermal camera and the survey has been conducted from January up to July. The data gathered regard measurements of the surface temperature of the exterior walls of the shelters, both inside and outside. The study aims at the evaluation of the thermal behavior of the shelter of buildings, which built in different time and under different regulations. The gathered data of the surface temperatures compare the different thermal behavior of the shelter. The analysis of the results and diagrams show that the thick masonry of the traditional Municipality Hall offers an insulation that is adequate. The building of 1970, which was constructed with the previous buildings regulation, has thermal losses due to inadequate insulation. The new building of 2002 has low thermal losses.

Performance tests on the ANN model prediction accuracy for cooling load of buildings during the setback period (셋백기간 중 건물 냉방시스템 부하 예측을 위한 인공신경망모델 성능 평가)

  • Park, Bo Rang;Choi, Eunji;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2017
  • Purpose: The objective of this study is to develop a predictive model for calculating the amount of cooling load for the different setback temperatures during the setback period. An artificial neural network (ANN) is applied as a predictive model. The predictive model is designed to be employed in the control algorithm, in which the amount of cooling load for the different setback temperature is compared and works as a determinant for finding the most energy-efficient optimal setback temperature. Method: Three major steps were conducted for proposing the ANN-based predictive model - i) initial model development, ii) model optimization, and iii) performance evaluation. Result:The proposed model proved its prediction accuracy with the lower coefficient of variation of the root mean square errors (CVRMSEs) of the simulated results (Mi) and the predicted results (Si) under generally accepted levels. In conclusion, the ANN model presented its applicability to the thermal control algorithm for setting up the most energy-efficient setback temperature.