• Title/Summary/Keyword: Energy efficiency of mobile devices

Search Result 80, Processing Time 0.02 seconds

Design of 2-4 Cell Li-ion Multi Battery Protection Analog Front End(AFE) IC (2-4 cell 리튬이온 멀티 배터리 보호회로 Analog Front End(AFE) IC 설계)

  • Kim, Sun-Jun;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.324-329
    • /
    • 2011
  • In recent years, the performance and functions of portable devices has increased. so it requires more power efficiency and energy density while using the battery for a long time. therefore Battery pack which are made up from several battery cells in series in order to achieve higher operating voltage is being used. when using a Li-ion battery, we need a protection circuit to protect from overcharge, over discharge, high temperature and over current. Also, when using battery pack, we need to Cell voltage balancing circuit that each cell in tune with the balancing. In this paper, the proposed IC is applicable by mobile devices as well as E-bike, hybrid vehicles, electric vehicles, and is expected to contribute to the development of domestic PMIC.

A Study on Implement of Smart Battery Management System using Embedded Processor (임베디드 프로세서를 이용한 스마트 배터리 관리 시스템 구현에 대한 연구)

  • Oh, Chang-Rok;Lee, Seong-Won
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.345-353
    • /
    • 2011
  • Recently portable mobile devices such as smart-phones and notebooks have rapidly increasing demands. Those devices consume more power because they are expected to offer more complex functionality including multimedia features. For these reasons engineering efforts are changing to focus on maximizing energy efficiency within a limited battery capacity instead of increasing computational performance. In this paper, we propose a battery management system using event driven programming technique on a embedded processor. We also show that the proposed system satisfies SBS (Smart Battery Specification) v1.1. The proposed system maintains minimum code size and memory size comparing to those of RTOSs. The proposed system can be also easily incorporated in the conventional RTOSs as a form of firmware.

Group Based Two-Layer Mobility Management of MTC Devices in 5G Network (5G 네트워크에서 MTC 단말들의 그룹기반 2계층 이동성 관리 기술)

  • Kim, Nam-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.631-637
    • /
    • 2018
  • In 5G mobile communication, it is necessary to provide different mobility to user equipments(UE) that do not require mobility management or need limited mobility management. In this paper, we propose a two-layer mobility management system that classifies multiple MTC devices with similar mobility levels into c-MTC and m-MTC groups. In order to improve the energy efficiency and service life by reducing the number of control signals generated when TAU is performed, the group header typically performs a Tracking Area Update(TAU) request and adjusts the periodic TAU update period according to the mobility level. The TAU update period of the m-MTC is set to 54 minutes proposed by the 3GPP standard and the c-MTC is set to 12 minutes. Compared to when the UEs perform TAU individually, it is found that the number of control signals decreases by 33% when the MME is not changed and by 49% when the MME is not changed in the m-MTC or c-MTC group.

Hardware Design and Implementation of a Parallel Processor for High-Performance Multimedia Processing (고성능 멀티미디어 처리용 병렬프로세서 하드웨어 설계 및 구현)

  • Kim, Yong-Min;Hwang, Chul-Hee;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.1-11
    • /
    • 2011
  • As the use of mobile multimedia devices is increasing in the recent year, the needs for high-performance multimedia processors are increasing. In this regard, we propose a SIMD (Single Instruction Multiple Data) based parallel processor that supports high-performance multimedia applications with low energy consumption. The proposed parallel processor consists of 16 processing elements (PEs) and operates on a 3-stage pipelining. Experimental results indicated that the proposed parallel processor outperforms conventional parallel processors in terms of performance. In addition, our proposed parallel processor outperforms commercial high-performance TI C6416 DSP in terms of performance (1.4-31.4x better) and energy efficiency (5.9-8.1x better) with same 130nm technology and 720 clock frequency. The proposed parallel processor was developed with verilog HDL and verified with a FPGA prototype system.

Development of Real Time Monitoring System based on Context-awareness for Wireless Sensor Networks (무선 센서네트워크에서 상황인식기반 실시간 감시시스템 개발)

  • Jo, Kyoung-Jin;Kim, Hee-Dae;Lee, Hyun-Jo;Sim, Chun-Bo;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.101-111
    • /
    • 2011
  • Due to recent development in wireless communication technologies and mobile information devices, the services on ubiquitous computing technology without time and place restriction have been spotlighted. Moreover, the interest of the Wireless Sensor Networks (WSNs) and context-awareness technologies have largely been escalating and their technologies utilization is active in the various applications such as healthcare, farm management and so on. However, the direct adaption of the existing context-awareness technique to the WSN technology has several drawbacks as follows. First, such systems waste precious energy of sensor nodes, due to unnecessary data transmissions. Secondly, since the existing work was designed to support only specific applications, it is required to implement a new context-awareness application for a specific purpose. Therefore, we, in this paper, propose a new real-time monitoring system based on context-awareness in WSNs. Our system not only enhances energy efficiency by reducing data transmissions by doing context-awareness on a sensor node, but also is scalable in terms of supporting new context-awareness functionalities through modularization.

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System (Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크)

  • Hong, Gyeonghwan;Park, Eunsoo;Choi, Sihoon;Shin, Dongkun
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.710-717
    • /
    • 2016
  • Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

Parameter-Efficient Neural Networks Using Template Reuse (템플릿 재사용을 통한 패러미터 효율적 신경망 네트워크)

  • Kim, Daeyeon;Kang, Woochul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.169-176
    • /
    • 2020
  • Recently, deep neural networks (DNNs) have brought revolutions to many mobile and embedded devices by providing human-level machine intelligence for various applications. However, high inference accuracy of such DNNs comes at high computational costs, and, hence, there have been significant efforts to reduce computational overheads of DNNs either by compressing off-the-shelf models or by designing a new small footprint DNN architecture tailored to resource constrained devices. One notable recent paradigm in designing small footprint DNN models is sharing parameters in several layers. However, in previous approaches, the parameter-sharing techniques have been applied to large deep networks, such as ResNet, that are known to have high redundancy. In this paper, we propose a parameter-sharing method for already parameter-efficient small networks such as ShuffleNetV2. In our approach, small templates are combined with small layer-specific parameters to generate weights. Our experiment results on ImageNet and CIFAR100 datasets show that our approach can reduce the size of parameters by 15%-35% of ShuffleNetV2 while achieving smaller drops in accuracies compared to previous parameter-sharing and pruning approaches. We further show that the proposed approach is efficient in terms of latency and energy consumption on modern embedded devices.

Improvement Research of BLE-based System for Monitoring the cause of Breakdown of Automatic Doors (자동문의 고장원인을 모니터링하기 위한 BLE 기반의 시스템 개선연구)

  • Kim, Gi-Doo;Won, Seo-Yeon;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.93-102
    • /
    • 2017
  • Recently increasing usage of smartphones makes the Internet of Things (IoT) a leading technology that can collect and share data through sensor networks and wireless communication such as low-power Bluetooth (BLE). BLE-based application can provide operators more precise information on Automatic Door system by remotely diagnosing the system faults through wireless sensor networks and sensors around the Automatic Door. In this paper, a smart device with extended BLE module is implemented which can monitor and Control the system states and faults remotely without on-site diagnostic. while maintaining system integrity so that increase efficiency of time and costs for system management. We can use the results of this research as a basis in evaluating reliability of data between devices, extending communication module in Controller of obsolete Door systems, and establishing centralized monitoring systems in near future with multi-channel Door Controls.

Interaction Between TCP and MAC-layer to Improve TCP Flow Performance over WLANs (유무선랜 환경에서 TCP Flow의 성능향상을 위한 MAC 계층과 TCP 계층의 연동기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • In recent years, the needs for WLANs(Wireless Local Area Networks) technology which can access to Internet anywhere have been dramatically increased particularly in SOHO(Small Office Home Office) and Hot Spot. However, unlike wired networks, there are some unique characteristics of wireless networks. These characteristics include the burst packet losses due to unreliable wireless channel. Note that burst packet losses, which occur when the distance between the wireless station and the AP(Access Point) increase or when obstacles move temporarily between the station and AP, are very frequent in 802.11 networks. Conversely, due to burst packet losses, the performance of 802.11 networks are not always as sufficient as the current application require, particularly when they use TCP at the transport layer. The high packet loss rate over wireless links can trigger unnecessary execution of TCP congestion control algorithm, resulting in performance degradation. In order to overcome the limitations of WLANs environment, MAC-layer LDA(Loss Differentiation Algorithm)has been proposed. MAC-layer LDA prevents TCP's timeout by increasing CRD(Consecutive Retry Duration) higher than burst packet loss duration. However, in the wireless channel with high packet loss rate, MAC-layer LDA does not work well because of two reason: (a) If the CRD is lower than burst packet loss duration due to the limited increase of retry limit, end-to-end performance is degraded. (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily by Reducing the drainage speed of the network buffer due to the increase of CRD. In this paper, we propose a new retransmission module based on Cross-layer approach, called BLD(Burst Loss Detection) module, to solve the limitation of previous link layer retransmission schemes. BLD module's algorithm is retransmission mechanism at IEEE 802.11 networks and performs retransmission based on the interaction between retransmission mechanisms of the MAC layer and TCP. From the simulation by using ns-2(Network Simulator), we could see more improved TCP throughput and energy efficiency with the proposed scheme than previous mechanisms.

Power Aware Vertical Handoff Algorithm for Multi-Traffic Environment in Heterogeneous Networks (이기종 무선망에서의 다양한 트래픽 환경이 고려된 에너지 효율적인 수직적 핸드오프 기법에 대한 연구)

  • Seo, Sung-Hoon;Lee, Seung-Chan;Song, Joo-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.679-684
    • /
    • 2005
  • There are a few representative wireless network access technologies used widely. WWAN is celluar based telecommunication networks supporting high mobility, WLAN ensures high data rate within hotspot coverage, and WDMB support both data and broadcasting services correspondingly. However, these technologies include some limitations especially on the mobility, data rate, transmission direction, and so on. In order to overvome these limitations, there are various studies have been proposed in terms of 'Vortical Handoff' that offers seamless connectivity by switching active connection to the appropriate interface which installed in the mobile devices. In this paper, we propose the interface selection algorithm and network architecture to maximize the life time of entire system by minimizing the unnecessary energy consumption of another interfaces such as WLAN, WDMB that are taken in the user equipment. In addition, by using the results of analyzing multiple types of traffic and managing user buffer as a metric for vertical handoff, we show that the energy efficiency of our scheme is $75\%$ and $34\%$ than typical WLAN for WDMB and WLAN preferred schemes, correspondingly.