• Title/Summary/Keyword: Energy dispersive X-ray spectroscope

Search Result 17, Processing Time 0.035 seconds

ON THE BONE TISSUE REACTION TO IMPLANTS WITH DIFFERENT SURFACE TREATMENT METHODS (임플랜트 표면 처리 방법에 따른 골조직 반응에 대한 연구)

  • Kim, Yong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Statement of problem: Implant surface characteristics plays an important role in clinical success and many studies have been made for improvement of success by changing surface roughness. Purpose: Appropriate increase of surface roughness increases the activity of osteoblast and enhance contact and retention between bone and implant. Material and method- Machined, SLA and RBM surface implants, which are the most commonly used implants were implanted into the tibia of rabbits and after 1 week, 4 weeks, 8 weeks and 12 weeks there were histologic and histomorphometric analysis and study for bone gradient and change of Ca/P ratio using EDS(Energy Dispersive X-ray Spectroscope). Results: Comparison of bone-implant contact showed no significant difference among each implant. In comparison of bone area rates, SLA showed higher value with significant difference at 1 week and 4 weeks, and SLA and RBM at 8 weeks than Machined implant (p<0.05). In analysis of bone constituents with EDS, titanium was specifically detected in new bones and the rates were constant by surface treatment method or period. In case of Ca/P ratio, according to surface treatment method, each group showed significant difference. Lots of old bone fragments produced during implantation remained on the rough surface of RBM implant surface and each group showed histological finding with active synthesis of collagen fibers until 12 weeks. In transmission electronic microscopic examination of sample slice after elapse of twelve weeks, tens nm of borderline (lamina limitans like dense line)was seen to contact the bone, on the interface between bone and implant. Conclusion: SLA and RBM implant with rough surface shows better histomorphometrical result and the trend of prolonged bone formation and maturation in comparison with Machined implant. In addition, implant with rough surface seems to be helpful in early stage bone formation due to remaining of old bone fragments produced in implantation. From the results above, it is considered to be better to use implant with rough surface in implantation.

Materials Properties of Gas Atomized and Extruded Mg-Zn-Y Alloys (가스분무 Mg-Zn-Y 합금분말 및 압출재의 특성)

  • Chae, Hong-Jun;Lee, Jin-Kyu;Bae, Jung-Chan;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.427-431
    • /
    • 2006
  • Mg-4.3Zn-0.7Y (at%) alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of atomized powders and those extruded bars was examined using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain size of the powders was coarsen as the initial powder size increased. After the extrusion, the grain size became fine due to the severe plastic deformation during the extrusion with the ratio of 10:1. Both the ultimate strength and elongation were enhanced with the decrease of initial particle size.

Effect of Powder Size of Mg-Zn-Y Alloy on the Consolidation

  • Kim, Taek-Soo;Chae, H.J.;Lee, J.K.;Jung, H.G.;Kim, Y.D.;Bae, J.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1266-1267
    • /
    • 2006
  • [ $MgZn_{4.3}Y_{0.7}$ ] alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of powders as atomized and bars as extruded was examined as a function of initial powder size distribution using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain sizes were decreased with extruding as well as decreasing the initial powder sizes. Both the ultimate strength and elongation were enhanced as the initial powder sizes were decreased.

  • PDF

Preparation of electrostatic spray pyrolysis derived nano powder and hydroxyapatite forming ability (정전분무 열분해법에 의한 나노분말의 제조 및 하이드록시 아파타이트 형성능력 평가)

  • Lee, Young-Hwan;Jeon, Kyung-Ok;Jeon, Young-Sun;Lee, Ji-Chang;Hwang, Kyu-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.244-249
    • /
    • 2006
  • Electrostatic spray pyrolysis, a novel fabrication technique, has been used in this study to prepare calcium phosphate nano powders. Final annealing was done at $400^{\circ}C$ for 30min in air. The hydroxyapatite - forming ability of the annealed powder has been evaluated in Eagle's minimum essential medium solution (MEM). X-ray diffraction analysis, field emission - scanning electron microscope, energy dispersive X-ray spectroscope, and Fourier transform infrared spectroscope were used to characterized the annealed powders after immersion in MEM. The powder with an amorphous structure induced hydroxyapatite formation on their surfaces after immersion fer 15 days.

The wettability of Sn-Xwt%Cu solder (Sn-Xwt%Cu 솔더의 젖음성에 관한 연구)

  • Lee, Jong-Beom;No, Bo-In;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.199-201
    • /
    • 2006
  • The wetting balance test was carried out to compare the wettability of Sn-Xwt%Cu($0{\sim}3$wt%) solders. And, IMCs which were formed at interface between solders and substrates were investigated by using XRD(x-ray diffractometer), SEM(scanning electron microscope) and EDS(energy dispersive spectroscope). The value of ${\gamma}_[fl}$ and(${\gamma}_{fs}-{\gamma}_{ls}$) had a tendency to increase with increasing wetting temperature. The activation energy that was calculated between the bare Cu substrate and flux was increased in the following order Sn-0.7wt%Cu(68.42 kJ/mol);Sn-3.0wt%Cu(72.66 kJ/mol);100wt%Sn solder(94.53 kJ/mol).

  • PDF

A study of physical and chemical properties of internal accumulated material in water mains (상수관로 내부 오염물질의 물리화학적 특성 분석)

  • Bae, Cheol-Ho;Choi, Doo-Yong;Lee, Doo-Jin;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.589-600
    • /
    • 2014
  • Tuberculation and slime accumulated in water mains play an important role in modifying water quality of drinking water. Therefore, in this study, it was investigated that what materials were accumulated, and what components were included in the tuberculation and slime of water mains. The Various tuberculation and slime sample were collected from the 12 water mains to analyze their physical and chemical properties and crystal structure. As a analysis method, VSS(Volatile suspended solid), SEM(scanning electron microscope), EDS(Energy Dispersive X-ray spectroscope), ICP(Inductively Coupled Plasma Mass Spectrometer) and XRD(X-Ray Diffractomete) were used. The results of analysis on the samples, the representative materials were verified such as iron corrosion products, the fine sand particles generated during backwash, fine particles of activated carbon, aluminum used in coagulation process, and manganese included in raw water.

Microstructure Evolution and Properties of Silicides Prepared by dc-sputtering (스퍼터링으로 제조된 니켈실리사이드의 미세구조 및 물성 연구)

  • An, Yeong-Suk;Song, O-Seong;Lee, Jin-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.601-606
    • /
    • 2000
  • Nickel mono-silicide(NiSi) shows no increase of resistivity as the line width decreases below 0.15$\mu\textrm{m}$. Furthermore, thin silicide can be made easily and restrain the redistribution of dopants, because NiSi in created through the reaction of one nickel atom and one silicon atom. Therefore, we investigated the deposition condition of Ni films, heat treatment condition and basic properties of NiSi films which are expected to be employed for sub-0.15$\mu\textrm{m}$ class devices. The nickel silicide film was deposited on the Si wafer by using a dc-magnetron sputter, then annealed at the temperature range of $150~1000^{\circ}C$. Surface roughness of each specimen was measured by using a SPM (scanning probe microscope). Microstructure and qualitative composition analysis were executed by a TEM-EDS(transmission electron microscope-energy dispersive x-ray spectroscope). Electrical properties of the materials at each annealing temperature were measured by a four-point probe. As the results of our study, we may conclude that; 1. SPM can be employed as a non-destructive process to monitor NiSi/NiSi$_2$ transformation. 2. For annealing temperature over $800^{\circ}C$, oxygen pressure $Po_2$ should be kept below $1.5{\times}10^{-11}torr$ to avoid oxidation of residual Ni. 3. NiSi to $NiSi_2$ transformation temperature in our study was $700^{\circ}C$ from the four-point probe measurement.

  • PDF

Ni Nanoparticles-hollow Carbon Spheres Hybrids for Their Enhanced Room Temperature Hydrogen Storage Performance

  • Kim, Jin-Ho;Han, Kyu-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.550-557
    • /
    • 2013
  • A glucose hydrothermal method is described for preparing hollow carbon spheres (HCS), which have a regular morphology and a high Brunauer-Emmett-Teller surface area of 28.6 m2/g. Scanning electron microscopy shows that they have thin shells and diameter between 2 and 8 ${\mu}m$. The HCSs were modified for the enhanced room temperature hydrogen storage by employing Ni nanoparticles on their surface. The Ni-decorated HCSs were characterized by X-ray diffraction, transmission electron microscopy coupled with an energy dispersive spectroscope, and an inductively coupled plasma spectrometer, indicating that fine and well-distributed Ni nanoparticles can be accomplished on the HCSs. The hydrogen uptake capacity in HCSs with and without Ni loading was evaluated using a high-pressure microbalance at room temperature under a hydrogen pressure upto 9 MPa. As much as 1.23wt.% of hydrogen can be stored when uniformly distributed Ni nanoparticles are formed on the HCSs, while the hydrogen uptake capacity of as-received HCSs was 0.41 wt.%. For Ni nanoparticle-loaded HCSs, hydrogen molecules could be easily dissociated into atomic hydrogen and then chemically adsorbed by the sorbents, leading to an enhanced capacity for storing hydrogen.

Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels (급속응고한 고합금 고속도 공구강의 미세조직 특성)

  • Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

Effects of TiN Coating on the Fatigue Fracture of Dental Implant System with Various Cyclic Loads

  • Jung, Da-Un;Chung, Chae-Heon;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.283-291
    • /
    • 2015
  • The purpose of this study was to investigate effects of TiN coating on the fatigue fracture of dental implant system with various cyclic loads. TiN coated abutment screw, the fixture, and abutment of internal hex type were prepared for fatigue test. The fatigue test was carried out according to ISO 14801:2003(E) using tensile and compression tester with repeated load from 30% to 80% of static fracture force. Morphology and fractured surface was observed by field emission scanning electron microscope(FE-SEM) and energy dispersive X-ray spectroscope(EDS). The fracture cycle drastically decreased as repeated load increased. Especially, in the case of TiN-coated abutment screw, fracture cycle increased compared to non-coated abutment screw. The fatigue crack was propagated fast as repeated load increased. The plastic deformation region decreased, whereas, cleavage fracture region increased as repeated load increased.