• Title/Summary/Keyword: Energy density

Search Result 5,715, Processing Time 0.036 seconds

The Lithium Ion Battery Technology

  • Lee, Ki-Young
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.72-75
    • /
    • 2001
  • The performance of Li-ion system based on $LiCoO_2$ and Graphite is well optimized for the 3C applications. The charge-discharge mode, the manufacturing process, the cell performance and the thermal reactions affecting safety has been explained in the engineering point of view. The energy density of the current LIB system is in the range of 300~400 Wh/l. In order to achieve the energy density higher than 500 Wh/l, the active materials should be modified or changed. Adopting new high capacity anode materials would be effective to improve energy density.

  • PDF

Wave Energy Distribution at Jeju Sea and Investigation of Optimal Sites for Wave Power Generation (파력발전 적지 선정을 위한 제주 해역 파랑에너지 분포특성 연구)

  • HONG KEY-YONG;RYU HWANG-JIN;SHIN SEUNG-HO;HONG SEOK-WON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.8-15
    • /
    • 2004
  • Wave power distribution is investigated to determine the optimal sites for wave power generation at Jeju sea which has the highest wave energy density in the Korean coastal waters. The spatial and seasonal variation of wave power per unit length is calculated in the Jeju sea area based on the monthly mean wave data from 1979 to 2002 which is produced by the SWAN wave model simulation in prior research. The selected favorable locations for wave power generation are compared in terms of magnitude of wave energy density and distribution characteristics of wave parameters. The results suggest that Chagui-Do is the most optimal site for wave power generation in the Jeju sea. The seasonal distribution of wave energy density reveals that the highest wave energy density occurs in the northwest sea in the winter and it is dominated by wind waves, while the second highest one happens at south sea in the summer and it is dominated by a swell sea. The annual average of wave energy density shows that it gradually increases from east to west of the Jeju sea. At Chagui-Do, the energy density of the sea swell sea is relatively uniform while the energy density of the wind waves is variable and strong in the winter.

Change of the Efficiency in All-Vanadium Redox Flow Battery with Current Density (전류밀도에 따른 바나듐 레독스 흐름 전지의 효율 변화)

  • CHOI, HO-SANG;IN, DAE-MIN;SONG, YOUNG-JOON;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.531-535
    • /
    • 2017
  • The performance of all-vanadium redox flow battery (VRFB) was tested with an increase of the current density. APS membrane (anion exchange membrane) and GF050CH (cabon felt) were used as a separator and electrode, respectively. An average energy efficiency of the VRFB was 79.5%, 68.1%, and 62.8% for the current density of $60mA/cm^2$, $120mA/cm^2$, and $160mA/cm^2$, respectively. It was confirmed that VRFB can be used as a energy storage system at the higher current density even if the energy efficiency was deceased about 21%.

Theoretical Study on Hydrophobicity of Amino Acids by the Solvation Free Energy Density Model

  • Kim, Jun-Hyoung;Nam, Ky-Youb;Cho, Kwang-Hwi;Choi, Seung-Hoon;Noh, Jae-Sung;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1742-1750
    • /
    • 2003
  • In order to characterize the hydrophobic parameters of N-acetyl amino acid amides in 1-octanol/water, a theoretical calculation was carried out using a solvation free energy density model. The hydrophobicity parameters of the molecules are obtained with the consideration of the solvation free energy over the solvent volume surrounding the solute, using a grid model. Our method can account for the solvent accessible surface area of the molecules according to conformational variations. Through a comparison of the hydrophobicity of our calculation and that of other experimental/theoretical works, the solvation free energy density model is proven to be a useful tool for the evaluation of the hydrophobicity of amino acids and peptides. In order to evaluate the solvation free energy density model as a method of calculating the activity of drugs using the hydrophobicity of its building blocks, the contracture of Bradykinin potentiating pentapeptide was also predicted from the hydrophobicity of each residue. The solvation free energy density model can be used to employ descriptors for the prediction of peptide activities in drug discovery, as well as to calculate the hydrophobicity of amino acids.

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

High Energy Density Dielectric Ceramics Capacitors by Aerosol Deposition (상온 분사 공정을 이용하여 제조한 고에너지 밀도 세라믹 유전체 커패시터)

  • Hyunseok Song;Geon Lee;Jiwon Ye;Ji Yun Jung;Dae-Yong Jeong;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.119-132
    • /
    • 2024
  • Dielectric ceramic capacitors present high output power density due to the fast energy charge and discharge nature of dielectric polarization. By forming dense ceramic films with nano-grains through the Aerosol Deposition (AD) process, dielectric ceramic capacitors can have high dielectric breakdown strength, high energy storage density, and leading to high power density. Dielectric capacitors fabricated by AD process are expected to meet the increasing demand in applications that require not only high energy density but also high power output in a short time. This article reviews the recent progress on the dielectric ceramic capacitors with improved energy storage properties through AD process, including energy storage capacitors based on both leadbased and lead-free dielectric ceramics.

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

Comparison of Calorie Intake and Satiety Rate by Different Energy Density Level of Kimbab (에너지 밀도 차이에 따른 김밥의 섭취량 및 포만도 비교)

  • Chang, Un-Jae;Jun, Seung-Chol;Park, Hyo-Jung;Hong, In-Sun;Jung, Eun-Young
    • Journal of the Korean Dietetic Association
    • /
    • v.14 no.4
    • /
    • pp.396-403
    • /
    • 2008
  • We attempted to determine whether energy density would influence calorie intake via cognitive cues, as reflected by satiety. This experiment was designed using two different energy density levels of Kimbab: normal Kimbab (1.6 kcal/g) vs low-density Kimbab (1.0 kcal/g). 26 female college students participated in this study. The subjects ate Kimbab in the lab once a week for 2 weeks. Each week at noon, they were served 24 units of either normal or low-density Kimbab, and we determined the units, grams, and calories of the real & cognitive intake of Kimbab, and also analyzed the satiety rate after eating Kimbab. Our results demonstrated that the real calorie intake from the low-density Kimbab was significantly lower than that of the normal Kimbab (290.3 kcal vs 474.4 kcal, p<0.001), but we noted no significant differences in the units and grams of real and cognitive intake between the normal and low-density Kimbab. However, despite consuming 39% lower caloric intake, the subjects reported similar levels of satiety rates with the two different density levels of Kimbab, as they did not perceive themselves to have eaten more normal Kimbab than low-density Kimbab. Thus, this study provides evidence that the energy density of food is a crucial determinant of caloric intake, and supports the notion that the consumption of low energy-dense foods may result in a reduction of caloric intake without altering satiety.

  • PDF

Density Aware Energy Efficient Clustering Protocol for Normally Distributed Sensor Networks

  • Su, Xin;Choi, Dong-Min;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.911-923
    • /
    • 2010
  • In wireless sensor networks (WSNs), cluster based data routing protocols have the advantages of reducing energy consumption and link maintenance cost. Unfortunately, most of clustering protocols have been designed for uniformly distributed sensor networks. However, some urgent situations do not allow thousands of sensor nodes being deployed uniformly. For example, air vehicles or balloons may take the responsibility for deploying sensor nodes hence leading a normally distributed topology. In order to improve energy efficiency in such sensor networks, in this paper, we propose a new cluster formation algorithm named DAEEC (Density Aware Energy-Efficient Clustering). In this algorithm, we define two kinds of clusters: Low Density (LD) clusters and High Density (HD) clusters. They are determined by the number of nodes participated in one cluster. During the data routing period, the HD clusters help the neighbor LD clusters to forward the sensed data to the central base station. Thus, DAEEC can distribute the energy dissipation evenly among all sensor nodes by considering the deployment density to improve network lifetime and average energy savings. Moreover, because the HD clusters are densely deployed they can work in a manner of our former algorithm EEVAR (Energy Efficient Variable Area Routing Protocol) to save energy. According to the performance analysis result, DAEEC outperforms the conventional data routing schemes in terms of energy consumption and network lifetime.