DOI QR코드

DOI QR Code

Change of the Efficiency in All-Vanadium Redox Flow Battery with Current Density

전류밀도에 따른 바나듐 레독스 흐름 전지의 효율 변화

  • CHOI, HO-SANG (Department of Chemical Engineering, Kyungil University) ;
  • IN, DAE-MIN (Department of Green Energy Engineering, Hoseo University Graduate School) ;
  • SONG, YOUNG-JOON (Department of Green Energy Engineering, Hoseo University Graduate School) ;
  • RYU, CHEOL-HWI (Department of Green Energy Engineering, Hoseo University Graduate School) ;
  • HWANG, GAB-JIN (Department of Green Energy Engineering, Hoseo University Graduate School)
  • 최호상 (경일대학교 화학공학과) ;
  • 인대민 (호서대학교 일반대학원 그린에너지공학과) ;
  • 송영준 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2017.09.20
  • Accepted : 2017.10.30
  • Published : 2017.10.30

Abstract

The performance of all-vanadium redox flow battery (VRFB) was tested with an increase of the current density. APS membrane (anion exchange membrane) and GF050CH (cabon felt) were used as a separator and electrode, respectively. An average energy efficiency of the VRFB was 79.5%, 68.1%, and 62.8% for the current density of $60mA/cm^2$, $120mA/cm^2$, and $160mA/cm^2$, respectively. It was confirmed that VRFB can be used as a energy storage system at the higher current density even if the energy efficiency was deceased about 21%.

Keywords

References

  1. G. J. Hwang, A. S. Kang, and H. Ohya, "Review of the redox-flow secondary battery", Chemical Industry and Technology, Vol. 16, No. 5, 1998, p. 455.
  2. H. S. Choi, J. C. Kim, C. H. Ryu, and G. J. Hwang, "Research review of the all vanadium redox-flow battery for large scale power storage", Membrane Journal, Vol. 21, No. 2, 2011, p.107.
  3. M. Skyllas-kazacos and F. Grossmith, "Efficient vanadium redox flow battery", J. Electrochem. Soc., Vol. 134, No. 12, 1987, p. 2950. https://doi.org/10.1149/1.2100321
  4. M. Skyllas-Kazacos, D. Kasherman, D. R. Hong, and M. Kazacos, "Characteristics and performance of 1kW UNSW vanadium redox battery", J. Power Sources, Vol. 35, 1991, p.399. https://doi.org/10.1016/0378-7753(91)80058-6
  5. H. S. Choi, Y. H. Oh, C. H. Ryu, and G. J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Ins. Chem. Eng., Vol. 45, No. 6, 2014, p. 2920. https://doi.org/10.1016/j.jtice.2014.08.032
  6. G. J. Hwang, Y. H. Oh, C. H. Ryu, and H. S. Choi, "Electrochemical properties of current collector in the all-vanadium redox flow battery", Korean Chem. Eng. Res., Vol. 52, No. 2, 2014, p. 182. https://doi.org/10.9713/kcer.2014.52.2.182
  7. P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You, and B. Yi, "A novel electrode-bipolar plate assembly for the vanadium redox flow battery applications", J. Power Sources, Vol. 175, 2008, p. 613. https://doi.org/10.1016/j.jpowsour.2007.09.006
  8. N. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, and M. Kamimoto, "Vanadium redox reactions and carbon electrodes for vanadium redox flow battery", Electrochim. Acta, Vol. 36, 1991, p. 1191. https://doi.org/10.1016/0013-4686(91)85108-J
  9. X. Li, K. Huang, S. Liu, N. Tan, and L. Chen, "Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application", Tran. Nonferrous Metals Society China, Vol. 17, 2007, p. 195. https://doi.org/10.1016/S1003-6326(07)60071-5
  10. L. Yue, W. Li, F. Sun, L. Zhao, and L. Xing, "Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery", Carbon, Vol. 48, 2010, p. 3079. https://doi.org/10.1016/j.carbon.2010.04.044
  11. T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, and A. Su, "Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery", J. Solid State Electrochem., Vol. 16, 2012, p. 579. https://doi.org/10.1007/s10008-011-1383-y
  12. X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, and Y. Dong, "PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery", J. Power Sources, Vol. 250, 2014, p. 274. https://doi.org/10.1016/j.jpowsour.2013.11.021
  13. D. Yang, G. Guo, J. Hu, C. Wang, and D. Jiang, "Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes", J. Materials Chem., Vol. 18, 2008, p. 350. https://doi.org/10.1039/B713467C
  14. X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, and H. Zhao, "Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery", Electrochim. Acta, Vol. 138, 2014, p. 264. https://doi.org/10.1016/j.electacta.2014.06.124
  15. F. Rahman and M. Skyllas-Kazacos, "Solubility of vanadyl sulfate in concentrated sulfuric acid solutions", J. Power Sources, Vol. 72, 1998, p. 105. https://doi.org/10.1016/S0378-7753(97)02692-X
  16. M. Skyllas-Kazacos, C. Menictas, and M. Kazacos, "Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell", J. Eelctrochem. Soc., Vol. 143, 1996, L86. https://doi.org/10.1149/1.1836609
  17. M. Kazacos, M. Cheng, and M. Skyllas-Kazacos, "Vanadium redox cell electrolyte optimization studies", J. Appl. Electrochem., Vol. 20, 1990, p. 463. https://doi.org/10.1007/BF01076057
  18. L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, and Z. Yang, "A stable vanadium redox flow battery with high energy density for large-scale energy storage", Adv. Energy Materials, Vol. 1, 2011, p. 394. https://doi.org/10.1002/aenm.201100008