DOI QR코드

DOI QR Code

Theoretical Study on Hydrophobicity of Amino Acids by the Solvation Free Energy Density Model

  • Kim, Jun-Hyoung (Department of Chemistry and CAMD Research Center, Soongsil University) ;
  • Nam, Ky-Youb (Department of Chemistry and CAMD Research Center, Soongsil University) ;
  • Cho, Kwang-Hwi (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Choi, Seung-Hoon (InSilico Tech Inc.) ;
  • Noh, Jae-Sung (Korea Research Institute of Chemical Technology) ;
  • No, Kyoung-Tai (Department of Biotechnology,Yonsei University, Member of Hyperstructured Organic Material Research Center)
  • Published : 2003.12.20

Abstract

In order to characterize the hydrophobic parameters of N-acetyl amino acid amides in 1-octanol/water, a theoretical calculation was carried out using a solvation free energy density model. The hydrophobicity parameters of the molecules are obtained with the consideration of the solvation free energy over the solvent volume surrounding the solute, using a grid model. Our method can account for the solvent accessible surface area of the molecules according to conformational variations. Through a comparison of the hydrophobicity of our calculation and that of other experimental/theoretical works, the solvation free energy density model is proven to be a useful tool for the evaluation of the hydrophobicity of amino acids and peptides. In order to evaluate the solvation free energy density model as a method of calculating the activity of drugs using the hydrophobicity of its building blocks, the contracture of Bradykinin potentiating pentapeptide was also predicted from the hydrophobicity of each residue. The solvation free energy density model can be used to employ descriptors for the prediction of peptide activities in drug discovery, as well as to calculate the hydrophobicity of amino acids.

Keywords

References

  1. Van de Waterbeemd, H.; Testa, B. Advances in Drug Research; Academic Press: London, 1987; Vol. 16, pp 87-227.
  2. Levitt, M. J. Mol. Biol. 1976, 104, 59. https://doi.org/10.1016/0022-2836(76)90004-8
  3. Hopp, S.; Woods, K. S. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 3824. https://doi.org/10.1073/pnas.78.6.3824
  4. Kyte, J.; Doolittle, R. J. Mol. Biol. 1982, 157, 105. https://doi.org/10.1016/0022-2836(82)90515-0
  5. Eisenberg, D.; McLachlan, A. D. Nature 1986, 319, 199. https://doi.org/10.1038/319199a0
  6. Ooi, T.; Oobatake, M.; Nemethy, G.; Scheraga, H. A. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 3086. https://doi.org/10.1073/pnas.84.10.3086
  7. Yoshida, T. J. Chromatogr. A 1998, 808, 105. https://doi.org/10.1016/S0021-9673(98)00092-2
  8. Nozaki, Y.; Tanford, C. J. Biol. Chem. 1971, 246, 2211.
  9. Wolfenden, R.; Andersson, L.; Cullis, P. M.; Southgate, C. C. Biochemistry 1981, 20, 849. https://doi.org/10.1021/bi00507a030
  10. Fauchere, J. L.; Pliska, V. Eur. J. Med. Chem. 1983, 4, 369.
  11. Shin, P.; Pedersen, L. G.; Gibbs, P. R.; Wolfenden, R. J. Mol. Biol. 1998, 280, 421. https://doi.org/10.1006/jmbi.1998.1880
  12. Ward, D. J. Peptide Pharmaceuticals; Elsevier: New York, 1991; pp 1-17.
  13. Tayor, M. D.; Amidon, G. Peptide Based Drug Design; Controlling Transport and Metabolism; American Chemical Society: Washington, DC, 1995.
  14. Charton, M. Prog. Phys. Org. Chem. 1990, 18, 163.
  15. DePriest, S. A.; Mayer, D.; Naylor, C. D.; Marshall, G. R. J. Am. Chem. Soc. 1993, 115, 5372. https://doi.org/10.1021/ja00066a004
  16. Waller, C. L.; Oprea, T. I.; Giolitti, A.; Marshall, G. R. J. Med. Chem. 1993, 36, 4152. https://doi.org/10.1021/jm00078a003
  17. Hellberg, S.; Sjostrom, M.; Skagerberg, B.; Wold, S. J. Med. Chem. 1987, 30, 1126. https://doi.org/10.1021/jm00390a003
  18. Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjostrom, M.; Wold, S. J. Med. Chem. 1998, 41, 2481. https://doi.org/10.1021/jm9700575
  19. Cocchi, M.; Johansson, E. Quant. Struct.-Act. Relat. 1993, 12, 1. https://doi.org/10.1002/qsar.19930120102
  20. Collantes, E. R.; Dunn, W. J., III. J. Med. Chem. 1995, 38, 2705. https://doi.org/10.1021/jm00014a022
  21. No, K. T.; Kim, S. G.; Cho, K. H.; Scheraga, H. A. Biophysical Chemistry 1999, 78, 127. https://doi.org/10.1016/S0301-4622(98)00225-7
  22. In, Y. Y.; No, K. T. to be published
  23. Kang, Y. K.; No, K. T.; Scheraga, H. A. J. Phys. Chem. 1996, 100, 15588. https://doi.org/10.1021/jp9611434
  24. Kwon, O. Y.; Kim, S. Y.; No, K. T. J. Phys. Chem. 1996, 100, 17670. https://doi.org/10.1021/jp961180v
  25. Holm, L.; Sander, C. J. Mol. Biol. 1991, 218, 183. https://doi.org/10.1016/0022-2836(91)90883-8
  26. Dennis, J. E.; Gay, D. M.; Welsch, R. E. ACM Trans. Math. SOFTWARE 1981, 7, 369. https://doi.org/10.1145/355958.355966
  27. Momany, F. A.; McGuire, R. F.; Burgess, A. W.; Scheraga, H. A. J. Phys. Chem. 1975, 79, 2361. https://doi.org/10.1021/j100589a006
  28. No, K. T.; Grant, J. A.; Scheraga, H. A. J. Phys. Chem. 1990, 94, 4732. https://doi.org/10.1021/j100374a066
  29. No, K. T.; Grant, J. A.; Jhon, M. S.; Scheraga, H. A. J. Phys. Chem. 1990, 94, 4740. https://doi.org/10.1021/j100374a067
  30. Park, J. M.; No, K. T.; Jhon, M. S.; Scheraga, H. A. J. Comput. Chem. 1993, 14, 1482. https://doi.org/10.1002/jcc.540141210
  31. Park, J. M.; Kwon, O. Y.; No, K. T.; Jhon, M. S.; Scheraga, H. A. J. Comput. Chem. 1995, 16, 1011. https://doi.org/10.1002/jcc.540160808
  32. No, K. T.; Cho, K. H.; Jhon, M. S.; Scheraga, H. A. J. Am. Chem. Soc. 1993, 115, 2005. https://doi.org/10.1021/ja00058a056
  33. No, K. T.; Cho, K. H.; Kwon, O. Y.; Jhon, M. S.; Scheraga, H. A. J. Phys. Chem. 1994, 98, 10742. https://doi.org/10.1021/j100093a012
  34. No, K. T.; Kwon, O. Y.; Kim, S. Y.; Jhon, M. S.; Scheraga, H. A. J. Phys. Chem. 1995, 99, 3478. https://doi.org/10.1021/j100011a013
  35. No, K. T.; Kwon, O. Y.; Kim, S. Y.; Cho, K. H.; Yoon, C. N.; Kang, Y. K.; Gibson, K. D.; Jhon, M. S.; Scheraga, H. A. J. Phys. Chem. 1995, 99, 13019. https://doi.org/10.1021/j100034a049
  36. Ferreira, L. A. F.; Auer, H.; Haslinger, E.; Fedele, Chr.; Habermehl, G. G. Toxicon 1999, 37, 661. https://doi.org/10.1016/S0041-0101(98)00208-6
  37. Chipot, C.; Pohorille, A. J. Phys. Chem. B 1998, 102, 281. https://doi.org/10.1021/jp970938n
  38. Vasques, M.; Nemethy, G.; Scheraga, H. A. Macromolecules 1983, 16, 1043. https://doi.org/10.1021/ma00241a004
  39. Grant, J. A.; Williams, R. L.; Scheraga, H. A. Biopolymers 1990, 30, 929. https://doi.org/10.1002/bip.360300908
  40. Head-Gordon, T.; Head-Gordon, M.; Frisch, M. J.; Brooks, C. L., III.; Pople, J. A. J. Am. Chem. Soc. 1991, 113, 5989. https://doi.org/10.1021/ja00016a010
  41. Bohm, H. J.; Brode, S. J. Am. Chem. Soc. 1991, 113, 7129. https://doi.org/10.1021/ja00019a007
  42. Gould, I. R.; Cornell, W. D.; Hillier, I. H. J. Am. Chem. Soc. 1994, 116, 9250. https://doi.org/10.1021/ja00099a048
  43. Roseman, M. A. J. Mol. Biol. 1988, 200, 513. https://doi.org/10.1016/0022-2836(88)90540-2
  44. Wimley, W. C.; Creamer, T. P.; White, S. H. Biochemistry 1996, 35, 5109. https://doi.org/10.1021/bi9600153
  45. Cho, S. J.; Zheng, W.; Tropsha, A. J. Chem. Inf. Comput. Sci. 1998, 38, 259. https://doi.org/10.1021/ci9700945
  46. Ufkes, J. G. R.; Visser, B. J.; Heuver, G.; Wynne, H. J.; Van der Meer, C. European J. Pharmacol. 1982, 79, 155. https://doi.org/10.1016/0014-2999(82)90590-8

Cited by

  1. Cross-talk between amino acid residues and flavonoid derivatives: insights into their chemical recognition vol.14, pp.45, 2012, https://doi.org/10.1039/c2cp42174g
  2. Prediction Models of P-Glycoprotein Substrates Using Simple 2D and 3D Descriptors by a Recursive Partitioning Approach vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1123
  3. Effects of Amino Acids on Malarial Heme Crystallization vol.31, pp.8, 2008, https://doi.org/10.1248/bpb.31.1483
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Comprehensive Studies on the Free Energies of Solvation and Conformers of Glycine: A Theoretical Study vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1985