• Title/Summary/Keyword: Energy data

Search Result 11,889, Processing Time 0.047 seconds

Analysis of The Human Thermal Environment in Jeju's Public Parking Lots in Summer and Suggestion for Its Modification (제주시 공영 주차장 내 여름철 인간 열환경 분석 및 저감 방안 제안)

  • Choi, Yuri;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.18-32
    • /
    • 2024
  • This study aims to analyze the summer human thermal environment in Jeju City's outdoor parking lots by measuring microclimate data and comparing pavement and vegetation albedoes and elements through computer simulations. In measured cases, results due to albedo showed no significance, but there was a significant difference between sunny and shaded areas by trees. The sunny area had a PET (physiological equivalent temperature) in the 'very hot' level, while the shaded area exhibited a 2-step lower 'warm' level. UTCI (universal thermal climate index) also showed that the sunny area was in the 'very strong heat stress' level, whereas the shaded area was 1-step lower in the 'strong heat stress' level, confirming the role of trees in reducing incoming solar radiant energy. Simulation results, using the measured albedoes, closely resembled the measured results. Regarding vegetation, scenarios with a wide canopy, high leaf density, and narrow planting spacing were effective in mitigating the human thermal environment, and the differences due to tree height varied across scenarios. The scenario with the lowest PET value was H9W9L3D8 (tree height 9m, canopy width 9m, leaf area index 3.0, planting spacing 8m), indicating a 0.7-step decrease compared to the current landscaping scenario. Thus, it was confirmed that, among landscaping elements, trees have a significant impact on the summer human thermal environment compared to ground pavement.

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics (국내 심부 지질특성 연구를 통한 고준위방사성폐기물 심층처분 후보 암종 선행연구)

  • Dae-Sung Cheon;Kwangmin Jin;Joong Ho Synn;You Hong Kihm;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.28-53
    • /
    • 2024
  • In general, high-level radioactive waste (HLW) generated as a result of nuclear power generation should be disposed within the country. Determination of the disposal site and host rock for HLW deep geological repository is an important issue not only scientifically but also politically, economically, and socially. Considered host rock types worldwide for geological disposal include crystalline rocks, sedimentary rocks, volcanic rocks, and salt dome. However, South Korea consists of various rock types except salt dome. This paper not only analyzed the geological and rock mechanical characteristics on a nationwide scale with the preliminary results on various rock type studies for the disposal host rock, but also reviewed the characteristics and possibility of various rock types as a host rock through deep drilling surveys. Based on the nationwide screening for host rock types resulted from literature review, rock distributions, and detailed case studies, Jurassic granites and Cretaceous sedimentary rocks (Jinju and Jindong formations) were derived as a possible candidate host rock types for the geological disposal. However, since the analyzed data for candidate rock types from this study is not enough, it is suggested that the disposal rock type should be carefully determined from additional and detailed analysis on disposal depth, regional characteristics, multidisciplinary investigations, etc.

A Study on Acoustic Emission and Micro Deformation Characteristics During Biaxial Compression Experiments of Underground Opening Damage (이축압축실험을 통한 지하공동 손상시 음향방출 및 미소변형 특성 연구)

  • Min-Jun Kim;Junhyung Choi;Taeyoo Na;Chan Park;Byung-Gon Chae;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.169-184
    • /
    • 2024
  • This study investigates acoustic emission (AE) and micro-deformation characteristics of circular openings through biaxial compression experiments. The experimental results showed a significant increase in the frequency, count, energy, and amplitude of AE signals immediately before damage occurred in the circular opening. The differences in frequency and count between before and after damage initiation were significantly pronounced, indicating suitable factors for identifying damage occurrence in circular openings. The results for digital image correlation (DIC) technique revealed that micro-deformation was concentrated around the openings, as evidenced by the spatial distribution of strain. In addition, spalling was observed at the end of the experiments. The AE and micro-deformation characteristics presented in this study are expected to serve as fundamental data for evaluating the stability of underground openings and boreholes for deep subsurface projects.

Assessment of External Radiation Dose for Workers in Domestic Water Treatment Facility According to the Working Type (국내 수처리시설 종사자 작업유형에 따른 외부피폭방사선량 평가)

  • Seong Hun Jeon;Seong Yeon Lee;Hyeok Jae Kim;Min Seong Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • The International Atomic Energy Agency (IAEA) proposes 11 industries that handle Naturally Occurring Radioactive Material (NORM) that are considered to need management. A water treatment facility is one of the above industries that takes in groundwater and produces drinking water through a water treatment process. Groundwater can accumulate natural radionuclides such as uranium and thorium in raw water by contacting rocks or soil containing natural radionuclides. Therefore, there is a possibility that workers in water treatment facilities will be exposed due to the accumulation of natural radionuclides in the water treatment process. The goal of this study is to evaluate the external radiation dose according to the working type of workers in water treatment facilities. In order to achieve the above goal, the study was conducted by dividing it into 1) analysis of the exposure environment, 2) measurement of the external radiation dose rate 3) evaluation of the external radiation dose. In the stage of analyzing the exposure environment, major processes that are expected to occur significantly were derived. In the measurement stage of the external radiation dose rate, a map of the external radiation dose rate was prepared by measuring the spatial radiation dose rate in major processes. Through this, detailed measurement points were selected considering the movement of workers. In the external radiation dose evaluation stage, the external radiation dose was evaluated based on the previously derived external radiation dose rate and working time. As a result of measuring the external radiation dose rate at the detailed points of water treatment facilities A to C, it was 1.90×10-1 to 3.75×100 μSv h-1, and the external radiation dose was analyzed as 3.27×10-3 to 9.85×10-2 mSv y-1. The maximum external radiation dose appeared during the disinfection and cleaning of activated carbon at facility B, and it is judged that natural radionuclides were concentrated in activated carbon. It was found that the external radiation dose of workers in the water treatment facility was less than 1mSv y-1, which is about 10% of the dose limit for the public. As a result of this study, it was found that the radiological effect of external radiation dose of domestic water treatment facility workers was insignificant. The results are expected to contribute as background data to present optimized safety management measures for domestic NORM industries in the future.

Distribution Maps for Waste generation using GIS (GIS 이용 폐기물 발생량 분포지도 작성)

  • Kim, Yi-Hyun;Hong, S. Young;Hong, Seung-Gil;Choe, Eunyoung;Nam, Jae Jak;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • This study was carried out to analyze national and regional distribution of the organic wastes generation and build their distribution maps including food wastes, paper and wood wastes, wastewater and slaughterhouse wastes. The information for the annual waste production was modified using statistics from Ministry of Environment (MOE). Based on waste generation resources data, we established database architecture table about waste generation. The distribution maps for food wastes were built up in both national and regional scales and distribution maps for paper and wood wastes, wastewater and slaughterhouse wastes were also produced, respectively. The distribution maps of waste generation graphically provide the information regarding biomass resources to policy-makers, farmers, general users and it is highly expected to be utilized for policy-making of environmental-friendly agriculture and bioenergy.

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility (저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구)

  • Go, Gyu-Hyun;Woo, Hyeon‑Jae;Cao, Van-Hoa;Kim, Hee-Won;Kim, YoungSeok;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.169-178
    • /
    • 2024
  • While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

Effect of dietary protein levels and age on growth performance, total excreta and nitrogen balance of laying hens during the growing phase

  • Jeseok Lee;Myunghwan Yu;Elijah Ogola Oketch;Shan Randima Nawarathne;Yu Bin Kim;Nuwan Chamara Chathuranga;Venuste Maniraguha;Bernadette Gerpacio Sta. Cruz;Eunsoo Seo;Haeeun Park;Hyunji Choi;Dong Jo Yu;Jung-Kon Kim;Jung Min Heo
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.193-203
    • /
    • 2024
  • This study examined the effect of a dietary protein level and age on growth performance, total excreta, and nitrogen balance in laying hen during the growing period for 18 weeks. A total of 96 Hy-Line Brown laying hens were divided into two treatments according to the experimental diets, with each group consisting of six replicates. The experimental diets included: 1) an adequate metabolizable energy and crude protein diet formulated to meet the age and breed specification for Hy-Line Brown containing 21, 18, 16, and 14% dietary CP during 0 to 6, 6 to 12, 12 to 15, 15 to 18 weeks, respectively (CON); 2) 2% CP deficiency from CON diet containing 19, 16, 14, 12% dietary CP during 0 to 6, 6 to 12, 12 to 15, 15 to 18 weeks, respectively (LP). Growth performance, total excreta, and nitrogen balance were investigated for 18 weeks every 3 weeks, and two-way ANOVA was used for statistical analysis of data. The LP group had lower total excreta and N intake than CON group in the whole period of the experiment (p < 0.001). Moreover, birds in the LP group showed lower N excretion than the CON group (p < 0.05). However, the CON group exhibited higher BW, ADG than the LP group (p < 0.001). Application of low-protein diet to laying hens during the growing period reduced N excretion, which contribute to the sustainable development of the laying hen industry by minimizing environmental pollution.

A Study on Radiation Exposure using Nominal Risk Coefficients (명목위험계수를 활용한 방사선 피폭에 관한 연구)

  • Joo-Ah Lee;Jong-Gil Kwak;Cheol-Min Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.383-389
    • /
    • 2024
  • In this study, we aimed to analyze the probability of secondary cancer occurring in the abdomen, a normal organ, due to photoneutron exposure during intensity-modulated radiotherapy for prostate cancer. The design of the radiation treatment plan for prostate cancer was established as a daily prescription dose of 220 cGy, a total of 35 treatments, and 7700 cGy. The experimental equipment was a True Beam STx (Varian, USA) linear accelerator from Varian. The energy used in the experiment was 15 MV, and the treatment plan was designed so that the photoneutron dose would be generated within the planning target volume (PTV). The radiation treatment plan was an Eclipse System (Varian Ver. 10.0, USA), and the number of irradiation portals was set to 5 to 9. The irradiation angle was designed so that 95% of the prescription dose area was set to 0 to 320°, and the number of beamlets per irradiation portal was set to 100. The optically stimulated luminescence dosimeter used in this study to measure the dose of photoneutrons was designed to measure photoneutron doses by coating 6LiCO3 on a device containing aluminum oxide components. It was studied that there is a minimum of 7.07 to 11 cases per 1,000 people with secondary cancer due to the photoneutron dose to the abdomen during intensity-modulated radiotherapy. In this study, we studied the risk of secondary radiation dose that may occur during intensity-modulated radiotherapy, and we expect that this will be used as meaningful data related to the probabilistic effects of radiation in the future.