DOI QR코드

DOI QR Code

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility

저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구

  • Go, Gyu-Hyun (Dept. of Civil Engineering, Kumoh National Institute of Tech.) ;
  • Woo, Hyeon‑Jae (Dept. of Civil Engineering, Kumoh National Institute of Tech.) ;
  • Cao, Van-Hoa (Dept. of Civil Engineering, Kumoh National Institute of Tech.) ;
  • Kim, Hee-Won (Dept. of Civil Engineering, Kumoh National Institute of Tech.) ;
  • Kim, YoungSeok (Hydrogen-Infrastructure Research Cluster, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Hyun-Jun (Hydrogen-Infrastructure Research Cluster, Korea Institute of Civil Engineering and Building Technology)
  • 고규현 (국립금오공과대학교 토목공학과 ) ;
  • 우현재 (국립금오공과대학교 토목공학과 ) ;
  • 카오반호아 (국립금오공과대학교 토목공학과 ) ;
  • 김희원 (국립금오공과대학교 토목공학과 ) ;
  • 김영석 (한국건설기술연구원 수소인프라클러스터 ) ;
  • 최현준 (한국건설기술연구원 수소인프라클러스터)
  • Received : 2024.08.12
  • Accepted : 2024.08.19
  • Published : 2024.08.31

Abstract

While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

최근 급격히 늘어나는 수소 에너지 수요를 감당하기 위해 안정적인 중·대규모의 지하 수소 저장 인프라가 필요한 가운데, 지하수소저장소에서의 가스 폭발에 따른 인접 건축물의 폭발 진동 안전성 평가가 중요해지고 있다. 본 연구에서는 저심도 지하수소저장소의 수소가스 폭발 재난 시나리오를 가정하여 인근 건축구조물에 미치는 진동 안전성에 대한 수치해석을 수행하였다. 메타모델을 활용한 매개변수연구를 수행하여 지반물성 조합 별 지반 동적 거동 변화를 예측하고, 지반공학적 영향인자에 대한 민감도를 분석하였다. 수소 저장소 직상부에서는 지반의 단위중량이 폭발에 의한 지반 진동치 변화에 가장 큰 영향을 미치는 반면 저장소로부터 멀리 떨어질수록 지반의 동적 물성의 민감도가 높게 나타났다. 또한, 도출된 지반 진동치와 국내 발파진동 허용치 자료를 기반으로 지상 건축구조물들의 진동 안정성을 평가한 결과, 대형 철근 콘크리트 구조물의 경우 약 10-30m 수준의 이격거리 확보 시 지반진동 안전성이 보장되는 것으로 평가되었다.

Keywords

Acknowledgement

이 성과는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업(No. 20240176-001, 수소도시 기반시설의 안전 및 수용성 확보기술 개발) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. 2022R1C1C1006507)로 이에 감사드립니다.

References

  1. Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., and Trosset, M. W. (1999), "A Rigorous Framework for Optimization of Expensive Functions by Surrogates", Structural Optimization, Vol.17, No.1, pp.1-13. 
  2. Choi, H. J., Kim, S., and Kim, Y.S. (2022), "A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure", J. Kor. Geosynth. Soci., Vol.21, No.3, pp.21-27. 
  3. COAG Energy Counsil (2019), Austalia's National Hydrogen Strategy. 
  4. CRIRO (2018), National Hydrogen Roadmap : Pathways to an Economically Sustainable Hydrogen Industry in Australia. 
  5. FCH JU (2019), Hydrogen Roadmap Europe, pp.4-77. 
  6. Go, G. H., Cao, V. H., Kim, Y., Choi, H. J., Oh, S. W., and Kim, M. J. (2023), "Evaluation of the Dynamic Stability of Underground Structures Assuming a Hydrogen Gas Explosion Disaster in a Shallow Underground Hydrogen Storage Facility", Appl. Sci., Vol.13, No.22, pp.12317. 
  7. Go, G.H., Jeon, J.S., Kim, Y.S., Kim, H.W., and Choi, H.J. (2022), "Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility", J. Kor. Geotech. Soc., Vol.38, pp.107-118. 
  8. Hoffman, R.M., Sudjianto, A., Du, X., and Stout, J. (2003), Robust Piston Design and Optimization Using Piston Secondary Motion Analysis (No. 2003-01-0148), SAE Technical Paper. 
  9. Johnson, G.R. and Cook, W.H. (1983), "A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures", In: Proceedings of 7th International Symposium on Ballistics. Hague, Netherlands, pp.541-547. 
  10. Ko, J. Y., Jeong, S. S., and Lee, S. Y. (2015), "A Study on the 3D Analysis of Driven Pile Penetration Based on Large Deformation Technique (Coupled Eulerian-Lagrangian)", J. Kor. Geotech. Soc., Vol.31, pp.29-38. 
  11. Larcher, M. and Casadei, F. (2010) "Explosions in Complex Geometries-a Comparison of Several Approaches". Int. J. Prot. Struc., Vol.1, pp.169-195. 
  12. Lee, H. -H., Kim, H. -G., Yoo, J. -O., Lee, H. -Y., and Kwon, O. -S. (2021), "A Basic Study for Explosion Pressure Prediction of Hydrogen Fuel Vehicle Hydrogen Tanks in Underground Parking Lot", J. Kor. Tunnelling & Underground Space Assoc., Vol.23, No.6, pp.605-612. 
  13. Matheron, G. (1963), "Principles of Geostatistics", Economic Geology, Vol.58, No.8, pp.1246-1266. 
  14. MOLIT (2015), Tunnel Standard Construction Specification. 
  15. Molkov, V. and Dery, W. (2015), "Blast Wave from a High-pressure Gas Tank Rupture in a Fire: Stand-alone and Under-vehicle Hydrogen Tanks", Int. J. Hydrogen Energy, Vol.40, No.36, pp.12581-12603. 
  16. Noh, W. (1964), A Time Dependent, Two Space Dimensional Coupled Eulerian-lagranguan Code. In: B Alder, S Fernbach and M Rotenberg (eds) : Methods in Computational Physics, Vol.3, Fundamental Methods in Hydrodynamics Academic Press, New York, NY 1964; 117-179. 
  17. Nozu, T., Tanaka, R., Ogawa, T., Hibi, K., and Sakai, Y. (2005), Numerical Simulation of Hydrogen Explosion Tests with a Barrier Wall for Blast Mitigation, International Conference on Hydrogen Safety, 08 September 2005. 
  18. Ryu, J. -O., Ahn, S. -H., and Lee H. Y. (2021), "A Basic Study on Explosion Pressure of Hydrogen Tank for Hydrogen Fueled Vehicles in Road Tunnels", J. Kor. Tunnelling & Underground Space Assoc., Vol.23, No.6, pp.517-534. 
  19. Zaid, M., Sadique, M. R., and Alam, M. M. (2022), "Blast Resistant Analysis of Rock Tunnel Using Abaqus: Effect of Weathering", Geotech. & Geolo. Eng., Vol.40, No.2, pp.809-832.