• Title/Summary/Keyword: Energy applications

Search Result 3,792, Processing Time 0.032 seconds

Piezoelectric Nanogenerators: Energy Harvesting Technology (압전 나노발전기: 에너지 수확 기술)

  • Shin, Dong-Myeong;Hwang, Yoon-Hwae
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.

Development Trends of Domestic Apparel Design by Analyzing Patent Applications (특허정보 분석을 통한 국내 의류 디자인 개발 동향)

  • Park, Cha-Cheol;Kim, Ho-Jung
    • Fashion & Textile Research Journal
    • /
    • v.12 no.4
    • /
    • pp.508-512
    • /
    • 2010
  • To study the development trends of domestic apparel design, we analyzed patent applications that were applied to the field of apparel design. It was presumed that economic and social environment have affected directly on the number of apparel design applications. Since year 2000, the whole number of apparel design applications has shown a remarkably increasing tendency, but depending on the items, the trends of patent applications have different tendency. While the number of applications regarding western costume such as a jacket, pants, suit and coat has been increasing from mid 2000s, the number of applications regarding Hanbok and undergarments have been decreasing from mid 2000s. In early 2000s, there were a lot of applications relating to design creation due to combination of color and form in apparel design. However, from mid 2000s, variety of techniques such as granting functional characteristics, asymmetry construction, introduction of various textiles, techniques of draping were being applied in design creation.

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Energy-Aware Data-Preprocessing Scheme for Efficient Audio Deep Learning in Solar-Powered IoT Edge Computing Environments (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 에너지 적응형 데이터 전처리 기법)

  • Yeontae Yoo;Dong Kun Noh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.159-164
    • /
    • 2023
  • Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.

Perspectives on Thermo-chemical Utilization of Biomass Resources (바이오매스자원의 열화학적이용 동향 및 과제)

  • Hong, Seong-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.413-416
    • /
    • 2002
  • Global warming is one of the major international concerns and renewable energy development and utilization are getting more attention recently. One of the competitive renewable energy alternatives is biomass. This paper describes the major concepts of gasification and fuel gas applications.

  • PDF

The Principles and Applications of Fluidized Bed Reactor with a Draft Tube (Draft Tube를 이용한 내부순환유동층 반응기의 원리와 응용)

  • 김상돈;송병호
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • 내부순환유동층이란 전형적인 기-고체 유동층 내부에 보조장치로서 원형관(draft tube) 또는 평판(partition plate)을 삽입하여 단일용기를 두 개의 층으로 분리하고 층 사이의 개방면적(opening area)을 통하여 입자의 순환이 일어나도록 하는 반응기 형태이다. (중략)

  • PDF