• 제목/요약/키워드: Energy and directional distribution

검색결과 45건 처리시간 0.029초

충격파 내에서 형성되는 아르곤 기체의 운동 에너지 분포와 속도 분포에 대한 비평형 분자동역학 모의실험 연구 (Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves)

  • 황현석;이지혜;권찬호;김홍래;박민규;김성식
    • 한국군사과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.147-153
    • /
    • 2011
  • A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.

신 에너지전원이 연계된 배전계통의 통합 보호기기의 알고리즘 개발에 관한 연구 (A Study on the Algorithm for Multi-Functional Protection Devices in Distribution Systems with New Energy Sources)

  • 윤기갑;강대훈;노대석
    • 한국산학기술학회논문지
    • /
    • 제10권9호
    • /
    • pp.2253-2260
    • /
    • 2009
  • 본 논문에서는 태양광과 풍력, 연료전지 등의 신 에너지전원(또는 분산전원)이 연계된 배전계통에 있어서 발생 가능한 보호협조의 문제점을 해결하기 위한 통합 보호기기의 알고리즘을 제시한다. 신 에너지전원을 배전계통에 연계함으로써 에너지 효율을 높일 수 있으며, 송배전 선로 건설비용의 절감, 전력 손실 감소, 전압 보상 및 전력 공급의 신뢰도 향상과 같은 많은 장점을 얻을 수 있다. 이러한 많은 장점에도 불구하고 신 에너지전원을 배전 계통에 연계하였을 경우, 전압변동, 고조파, 전력 품질 저하, 단락 용량 증대와 같은 많은 문제점도 발생하여, 이러한 문제점을 해결하기 위한 계통연계 장치 및 보호기기의 필요성이 증대하고 있는 실정이다. 즉, 현재의 배전계통 보호 방식은 단방향 조류방식으로 구성되어 있으나 분산전원의 도입으로 보호 기기가 설치되어 있는 계통에 정상상태임에도 불구하고 역방향의 전력조류가 발생될 수 있다. 따라서 본 논문에서는 이에 대한 새로운 배전 보호 알고리즘을 탑재한 보호기기의 알고리즘을 제시한다.

태양광발전이 연계된 배전계통의 보호기기 오동작에 대한 최적 운용방안에 관한 연구 (A Study on the Optimal Method for Mal-function of Re-closer at the Distribution Feeders Interconnected with PV Systems)

  • 김찬혁;박현석;노대석;신창훈;윤기갑
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1512-1518
    • /
    • 2009
  • Recently, new dispersed power sources such as photovoltaics, wind power, fuel cell etc. are energetically interconnected and operated in the distribution systems, as one of the national projects for alternative energy. This paper deals with the optimal countermeasures for the mal-function of protective devices at primary feeder in distribution systems when new power sources like photovoltaic (PV) systems are interconnected, based on the symmetrical components of short circuit studies. When new power sources are considered to be interconnected to distribution systems, bi-directional power flow and interconnection transformer connection of new power sources may cause the operation problems of protective devices (mainly re-closer), since new power sources can change typical characteristics of distribution systems. Therefore, this paper shows an analysis skill of the mal-functional mechanism of protective relay and proposes the optimal solution for the mal-function problem using the symmetrical components of fault analysis. And, this paper also shows the effectiveness of proposed method by the simulation at the field distribution systems.

절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향 (Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System)

  • 한지수;엄정기;이다혜
    • 자원환경지질
    • /
    • 제50권1호
    • /
    • pp.61-71
    • /
    • 2017
  • 본 연구는 절리의 빈도 및 길이분포가 절리암반의 수리지질학적 특성에 미치는 영향을 평가하기 위하여 이차원 불연속절리망 (DFN; discrete fracture network) 유체유동 해석을 바탕으로 한 수치실험을 수행하였다. 두개의 절리군을 사용하여 절리의 빈도와 길이분포를 달리하며 추계론적으로 생성한 총 51개의 DFN 시스템에 대하여 $0^{\circ}$부터 매 $30^{\circ}$ 간격으로 총 12 방향으로 구현한 총 612개의 $20m{\times}20m$ DFN 블록에서 방향에 따른 블록수리전도도가 산정되었다. 또한, 각각의 DFN 시스템에서 이론적 블록수리전도도와 더불어 주 수리전도도텐서, 평균 블록수리전도도 등이 산정되었다. 절리군의 빈도의 증가 또는 길이의 평균 및 표준편차 증가에 따라 임의 방향으로의 블록수리전도도는 증가하며 DFN 시스템에 대한 등가연속체 취급 가능성이 높아지지만, 절리군 간의 빈도 차이가 커지면 블록수리전도도의 이방성 증대로 인하여 등가연속체 취급 가능성이 낮아질 수 있는 것으로 평가되었다. 두 절리군의 교차각이 작을수록 등가연속체 특성은 빈도 및 길이분포의 변화에 상대적으로 더욱 영향을 받는 것으로 평가되었다. 등가연속체로 취급하기 어려울 정도로 두 절리군의 교차각이 작아도 절리군의 빈도 또는 길이 분포가 증가하면 등가연속체 취급 가능성은 높아진다.

Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations

  • Chang M. Kang;Seung-Tae Jung;Seong-Hwan Pyo;Youjung Seo;Won-Gu Kang;Jin-Kyu Kim;Young-Chang Nho;Jong-Seok Park;Jae-Hak Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4678-4684
    • /
    • 2023
  • Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator.

Energy Consumption - Economic Growth Nexus in Vietnam: An ARDL Approach with a Structural Break

  • NGUYEN, Ha Minh;NGOC, Bui Hoang
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권1호
    • /
    • pp.101-110
    • /
    • 2020
  • Energy and energy consumption play an important role in strategies for socio-economic development of the country. In 1995, Vietnam officially entered the 500 kV North-South transmission power line exploits, with a full length of 1,487 km. The purpose of this study is to investigate the breakpoint and the transition effect of energy consumption to economic growth in Vietnam during the period of 1980-1994, and 1995-2016. The Autoregressive Distributed Lag (ARDL) approach and the Bounds test are used to test for the presence of cointegration, whereas the Toda and Yamamoto procedure Granger causality test is used for the direction of causality. The result of the Bounds test validates the existence of cointegration among the included variables. The empirical results provide evidence that energy consumption has a positive impact on the economic growth of Vietnam in the long run. The causality test shows that there is bi-directional causality between energy consumption and economic growth, supported feedback hypothesis. There is a breakpoint in 1995 and the contribution of energy consumption in economic growth in the period of 1995-2016 is lower than the stage 1980-1994. This study suggests Government authorities explore new sources of energy to achieve sustainable economic development in the long run.

PSCAD를 이용한 상시 루프배전시스템의 보호계전기 모델 (A PSCAD Modeling of Protection Relay of On-Line Distribution System)

  • 김진수;박진현;조보현;문원식;조성민;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.406-407
    • /
    • 2011
  • The closed-loop distribution system is more flexible and more reliable than radial system. If any type fault occurs, the reliability of system can be better by providing electrical energy through another distribution line. However, it needs protection device coordination of different type. Typically, it is available by using directional overcurrent relay (67). This paper gives a solution about loop protection relay modeling which can be used by the simulation tools.

  • PDF

파수 영역에서 지향성 구조-음향 연성 방사체 설계 (Design of Directional Structural-Acoustic Coupled Radiator in Wave Number Domain)

  • 서희선;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.240-243
    • /
    • 2005
  • A design procedure using spatial Fourier transform is presented for a structural-acoustic coupled radiator that can emit sound in the desired direction with high power and low side lobe level. The design procedure consists of three steps. Firstly, the structural-acoustic coupled radiator is chosen to obtain strong coupling between structural vibration and acoustic pressure. The radiator is composed by two spaces which are separated by a wall. Spaces can be categorized as reverberant finite space and unbounded semi-infinite space, and the wall are composed of two plates and an opening. The velocities on the wall are predicted. Secondly, directivity and energy distribution of radiator are predicted in wave number domain using spatial Fourier transform. Finally, optimal design variables are calculated using a dual optimal algorithm. Its computational example is presented including the directivity and resulting pressure distribution using proposed procedure.

  • PDF

Blockchain for Securing Smart Grids

  • Aldabbagh, Ghadah;Bamasag, Omaimah;Almasari, Lola;Alsaidalani, Rabab;Redwan, Afnan;Alsaggaf, Amaal
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.255-263
    • /
    • 2021
  • Smart grid is a fully-automated, bi-directional, power transmission network based on the physical grid system, which combines sensor measurement, computer, information communication, and automatic control technology. Blockchain technology, with its security features, can be integrated with Smart Grids to provide secure and efficient power management and transmission. This paper dicusses the deployment of Blockchain technology in Smart Grid. It presents application areas and protocols in which blockchain can be applied to in securing smart grid. One application of each area is explored in detail, such as efficient peer-to-peer transaction, lower platform costs, faster processes, greater flexibility in power generation to transmission, distribution and power consumption in different energy storage systems, current barriers obstructing the implementation of blockchain applications with some level of maturity in financial services but concepts only in energy and other sectors. Wide range of energy applications suggesting a suitable blockchain architecture in smart grid operations, a sample block structure and the potential blockchain technicalities employed in it. Also, added with efficient data aggregation schemes based on the blockchain technology to overcome the challenges related to privacy and security in the smart grid. Later on, consensus algorithms and protocols are discussed. Monitoring of the usage and statistics of energy distribution systems that can also be used to remotely control energy flow to a particular area. Further, the discussion on the blockchain-based frameworks that helps in the diagnosis and maintenance of smart grid equipment. We have also discussed several commercial implementations of blockchain in the smart grid. Finally, various challenges have been discussed for integrating these technologies. Overall, it can be said at the present point in time that blockchain technology certainly shows a lot of potentials from a customer perspective too and should be further developed by market participants. The approaches seen thus far may have a disruptive effect in the future and might require additional regulatory intervention in an already tightly regulated energy market. If blockchains are to deliver benefits for consumers (whether as consumers or prosumers of energy), a strong focus on consumer issues will be needed.

태양광전원의 연계에 의한 배전계통 보호기기의 최적 운용방안에 관한 연구 (Optimal Operation Methods of Protection Devices in Distribution Systems with PV Systems)

  • 김병기;박재범;유경상;노대석
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1485-1491
    • /
    • 2011
  • This paper deals with the technical problems for the protection devices, by simulating test facilities of protection coordination for Photovoltaic systems. In order to analyze the operation characteristics for the protection devices in the case that the Photovoltaic systems with bi-directional power supply are located in the feeder, this paper proposes the test facilities composed of model distribution system, protection device and model Photovoltaic systems. By performing the simulation for operation characteristics for the protection devices based on the test facilities, this paper presents the malfunction mechanism for the protection devices. The test results show that this paper is practical and effective for the technical guideline for the Photovoltaic systems.