• Title/Summary/Keyword: Energy Transmission

Search Result 2,704, Processing Time 0.026 seconds

Artificial Intelligence Inspired Intelligent Trust Based Routing Algorithm for IoT

  • Kajol Rana;Ajay Vikram Singh;P. Vijaya
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.149-161
    • /
    • 2023
  • Internet of Things (IoT) is a relatively new concept that has gained immense popularity in a short period of time due to its wide applicability in making human life more convenient and automated. As an illustration: the development of smart homes, smart cities, etc. However, it is also accompanied by a substantial number of risks and flaws. IoT makes use of low-powered devices, so secure, less time-consuming and energy-intensive transmission (routing) of messages due to the limited availability of energy is one of the many and most significant concerns for IoT developers. The following paper presents a trust-based routing scenario for the Internet of Things (IoT) that exploits the past transmission record from the cupcarbon simulator's log files. Artificial Neural Network is used to quantify knowledge of trust, calculate the value of trust, and share this information with other network devices. As a human behavioural pattern, trust provides a superior method for making routing decisions. If there is a tie in the trust values and no other path is available, the remaining battery power is used to break the tie and make a forwarding decision; this is also seen as a more efficient use of the available resources. The proposed algorithm is observed to have superior energy consumption and routing decisions compared to conventional routing algorithms, and it improves the communication pattern.

Cooperative Communication Scheme Based on channel Characteristic for Underwater Sensor Networks (수중 센서 네트워크를 위한 채널 특성기반의 협력 통신 기법)

  • Ji, Yong-Joo;Choi, Hak-Hui;Lee, Hye-Min;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.21-28
    • /
    • 2016
  • This paper presents a cooperative transmission scheme for underwater acoustic sensor networks to improve packet transmission rate and reduce energy consumption. Source node transmits duplicated information relayed by distributed antennas called a virtual antenna array. Destination node combines that information to reduce packet error rate. The suggested cooperative scheme enhances the reliability by providing high diversity gains through intermediate relay nodes to overcome the distinct characteristics of the underwater channel, such as high transmission loss, propagation delay, and ambient noises. It is suggested that the algorithm select destinations and potential relays from a set of neighboring nodes that utilize distance cost, the residual energy of each node and local measurement of the channel conditions into calculation. Simulation results show that the proposed scheme reduces average energy consumption, response time, and increases packet delivery ratio compared with the SPF(Shortest Path First) and non-cooperative scheme using OPNET Moduler.

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.

An Experimental and Numerical Study of Corona in a Cage with Sandy and Dusty Flow in High Altitude Area

  • Lv, Yukun;Ge, Zekun;Liu, Yunpeng;Zhu, Lei;Wei, Shaoke
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1726-1733
    • /
    • 2015
  • In order to study the effect of the high-altitude and dusty weather in northwest of China on the corona characteristics of transmission lines, a corona caged based experimental system with sandy and dusty flow condition is numerically investigated and designed. This system overcomes the difficulties caused by harsh environment and offers easy usage for off-site tests. The design parameters are mainly determined by the characteristics of strong sandstorm in northwest region and test requirements. By the comparison of numerical simulation of the particle diffusion in four programs with rectangular or circular air-duct, a practical technology, which introduces swirl to control the particle diffusion length, is obtained. Accordingly, the structure of round air-duct with swirl elbow in inlet and outlet of high level segment is selected as final program. Systems of control and measurement are designed at the same time. Field tuning results show that the test system could ensure the range of sandy and dusty coverage. The wind speed, sandy and dusty concentration could be controlled and meet the requirements of accuracy. The experimental system has many features, such as simple structure, easy to be assembled, disassembled, transported and operated, small space occupied.

Assessment of Acid Solubility Test on Korean Asbestos by Transmission Electron Microscope Equipped with Energy Dispersive X-ray Spectrometer (한국산 석면의 산 용해도 평가 연구)

  • Chung, Yong Hyun;Han, Jeong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • Objectives: Chrysotile is mineralogically distinct from amphiboles, displaying a notably different chemical structure. The thin sheets that form chrysotile fiber lead to the ability of the lung/macrophage system to decompose the chrysotile fibers. This study was performed in order to compare the physicochemical characteristics of Korean asbestos with those of Canadian amphiboles. Materials: An acid solubility test for each test substance was done to compare pH 4.5 and pH 1.2 distilled water. Asbestos fibers which had been placed in acid solutions for five days, five weeks and weeks were analyzed with a transmission electron microscope equipped with an energy dispersive X-ray spectrometer (TEM-EDS). Results: The composition element (Mg) of Korean chrysotile, Korean anthophyllite and Canadian amosite significantly decreased from 5 days and also decreased significantly after 5 weeks and 10 weeks. Only the composition (Mg) of Canadian crocidolite did not change under any conditions. From 5 days, the Mg of Korean chrysotile, Korean anthophyllite and Canadian amosite were significantly lower than before the acid treatment, but there were no changes over time or by the pH of the acid solutions. Particularly after 10 weeks, the composition (Mg) of Korean chrysotile in the pH 1.2 acid solution showed a rapid reduction of 15.86%. Conclusions: Korean chrysotile was very weak in an acid environment, beginning to show significant changes after 5 days. The Mg component rapidly decreased after 10 weeks in the pH 1.2 acid solution.

Analysis on the Wave Characteristics of Submerged Breakwater Considering Energy Dissipation of Seabed (해저면의 에너지 감쇠를 고려한 불투과 잠제의 파랑특성해석)

  • Kim Nam-Hyeong;Yang Soon-Bo;Park Min-Su;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2004
  • The transmission coefficients of impermeable submerged breakwater on permeable bottom are computed numerically using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structures. Wave motion over permeable bottom is simulated by introducing a linear dissipation coefficient and an added mass coefficient. The results indicate that the wave over permeable bottom travels being damped, and that transmission coefficients for permeable bottom are smaller than those for impermeable bottom, and result from the change of width and height of submerged breakwater.

  • PDF

A Data Gathering Protocol for Multihop Transmission for Large Sensor Networks (대형 센서네트워크에서 멀티홉 전송을 이용한 데이터 수집 프로토콜)

  • Park, Jang-Su;Ahn, Byoung-Chul
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • This paper proposes a data gathering method by adapting the mobile sink to prolong the whole operation time of large WSNs. After partitioning a network into several clusters, a mobile sink visits each cluster and collects data from it. An efficient protocol improves the energy efficiency by delivering messages from the mobile sink to the cluster head as well as reduces the data gathering delay, which is the disadvantage of the mobile sink. For the scalability of sensor network, the network architecture should support the multihop transmission in the duster rather than the single hop transmission. The process for the data aggregation linked to the travelling path is proposed to improve the energy consumption of intermediate nodes. The experiment results show that the proposed model is more efficient than legacy methods in the energy consumption and the data gathering time.

A Solution for Reducing Transmission Latency through Distributed Duty Cycling in Wireless Sensor Networks (무선 센서 네트워크에서 수신구간 분산 배치를 통한 전송지연 감소 방안)

  • Kim, Jun-Seok;Kwon, Young-Goo
    • 한국ITS학회:학술대회논문집
    • /
    • v.2007 no.10
    • /
    • pp.225-229
    • /
    • 2007
  • Recently, wireless sensor networks are deployed in various applications range from simple environment monitoring systems to complex systems, which generate large amount of information, like motion monitoring, military, and telematics systems. Although wireless sensor network nodes are operated with low-power 8bit processor to execute simple tasks like environment monitoring, the nodes in these complex systems have to execute more difficult tasks. Generally, MAC protocols for wireless sensor networks attempt to reduce the energy consumption using duty cycling mechanism which means the nodes periodically sleep and wake. However, in the duty cycling mechanism. a node should wait until the target node wakes and the sleep latency increases as the number of hops increases. This sleep latency can be serious problem in complex and sensitive systems which require high speed data transfer like military, wing of airplane, and telematics. In this paper, we propose a solution for reducing transmission latency through distributed duty cycling (DDC) in wireless sensor networks. The proposed algorithm is evaluated with real-deployment experiments using CC2420DBK and the experiment results show that the DDC algorithm reduces the transmission latency significantly and reduces also the energy consumption.

  • PDF

Energy Efficiency Analysis and Optimization of Multiantenna Heterogeneous Cellular Networks Modeled by Matérn Hard-core Point Process

  • Chen, Yonghong;Yang, Jie;Cao, Xuehong;Zhang, Shibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3366-3383
    • /
    • 2020
  • The Poisson point process (PPP) is widely used in wireless network modeling and performance analysis because it can provide tractable results for heterogeneous cellular networks (HetNets) analysis. However, it cannot accurately reflect the spatial distribution characteristics of the actual base stations (BSs). Considering the fact that the distribution of macro base stations (MBSs) is exclusive, the deployment of MBSs is modeled by the Matérn hard-core point process (MHCPP), and the deployment of pico base stations (PBSs) is modeled by PPP. This paper studies the performance of multiantenna HetNets and improves the energy efficiency (EE) of HetNets by optimizing the transmit power of PBSs. We use a simple approximate method to study the signal-to-interference ratio (SIR) distribution in two-tier MHCPP-PPP HetNets and derive the coverage probability, average data rate and EE of HetNets. Then, an optimization algorithm is proposed to improve the EE of HetNets. Finally, three transmission technologies are simulated and analyzed. The results show that multiantenna transmission has better system performance than single antenna transmission and that selecting the appropriate transmit power for a PBS can effectively improve the EE of the system. In addition, two-tier MHCPP-PPP HetNets have higher EE than two-tier PPP-PPP HetNets.

An Energy-Efficient Protocol For Detecting Injurious Insect in Wireless Bio Sensor Networks (무선 바이오센서 네트워크에서 에너지 효율을 고려한 해충 감지 시스템을 구축하기 위한 프로토콜)

  • Yoo, Dae Hyun;Lee, Joo Sang;An, Beongku;Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we proposed a system protocol for detecting injurious insect to support energy saving transmission in wireless bio sensor networks. The main ideas and features of the system are as follows. First, the route establishment method which is based on the energy efficiency and stability by using time-division tree structure. Second, multi-hop direction-based data gatering structure. In this structure, the selected fading method is used to transmit packet via the established tree structure for supporting power saving and route lifetime efficiently. Finally, we can get the node power saving and reduce transmission delay, thus network lifetime and efficiency are improved. The performance evaluation of the proposed protocol is via OPNET(Optimized Network Engineering Tool).

  • PDF