• Title/Summary/Keyword: Energy Transfer Resistance

검색결과 244건 처리시간 0.028초

초음파 스케일 방지를 위한 전자구동기법에 관한 연구 (A Study of Electronic Generation Technique for the Scale Prevention Using Ultrasonic Waves)

  • 허필우;이양래;김재형;임의수
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.51-56
    • /
    • 1996
  • In the case of a heat exchanger, scale is made in the tube by the chemical reactions of Ca and Mg ions contained in the water, and heat transfer rate is reduced because of increment of heat resistance in the pipe of the heat flow. Thus it brings to reduce the energy efficiency and to make environmental pollution by the use of chemicals for the prevention and removement of scale. In this paper, we discussed the design of electronic generator for ultrasonic scale preventor and analyzed the fundamental characteristic for ultrasonic transducer.

  • PDF

전력계통에서의 전압붕괴 매카니즘에 관한 연구 (A Study on Voltage Collapse Mechanism in Electric Power Systems)

  • 김도형;류헌수;문영현;최병곤;박정도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.171-174
    • /
    • 2001
  • In this paper, an EMM(Equivalent Mechanical Model) is developed to explain the voltage collapse mechanism by reflecting the effects of reactive powers. The proposed EMM exactly represents the voltage instability mechanism described by the system equations. By the use of the EMM model the voltage collapse mechanism has been illustrated by showing the exactness of the results. It is also discussed a system transform in technique to eliminate the resistance component of the Thevenin equivalent impedance for practical applications.

  • PDF

전력설비용 Polyimide의 전압-전류특성 (Voltage-Current Properties of Polyimide use Electrical Power Installation)

  • 전동규;이경섭
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1998년도 학술발표회논문집
    • /
    • pp.112-115
    • /
    • 1998
  • We investigate the qualities of organic materials by which can manufacture organic thin films for solar cells and make thin films for insulation layers of an insulated cable. We give pressure stimulation into organic thin films and detect the induced displacement current. In processing of a device manufacture, We can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/organic thin films(polyimide)/Au and I-V characteristic of the device is measured from 0[V] to +5[V]. The maximum value of measured current is increased as the number of accumulated layers are decreased. The resistance for the number of accumulated layers, the energy density for an input voltage show desired results, and the insulation of a thin film is better as the interval between electrodes is larger.

  • PDF

A Study on Voltage Collapse Mechanism using Equivalent Mechanical Model

  • Kim, Do-Hyung;Ryu, Heon-Su;Lee, Jong-Gi;Moon, Young-Hyun
    • KIEE International Transactions on Power Engineering
    • /
    • 제12A권1호
    • /
    • pp.6-14
    • /
    • 2002
  • In this paper, an EMM(Equivalent Mechanical Model) Is developed to explain the voltage collapse mechanism by reflecting the effects of reactive powers. The proposed EMM exactly represents the voltage instability mechanism described by the system equations. By the use of the EMM model, the voltage collapse mechanism has been illustrated by showing the exactness of the results. The stable region has been investigated with a reactive-power-controlled two-bus system, which shows that special alerts are required when the system operates with leading power factor. It is also discussed a system transform technique to eliminate the resistance component of the Thevenin equivalent impedance for practical applications. Finally, the results adopting the proposed method fur sample systems which were transformed are listed

전고상 전지를 위한 스파크 플라스마 소결 기술과 응용 (Spark Plasma Sintering Technique and Application for All-Solid-State Batteries)

  • 이석희
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.170-181
    • /
    • 2019
  • All-solid-state batteries have received increasing attention because of their high safety aspect and high energy and power densities. However, the inferior solid-solid interfaces between solid electrolyte and active materials in electrode, which cause high interfacial resistance, reduce ion and electron transfer rate and limit battery performance. Recently, spark plasma sintering is emerging as a promising technique for fabricating solid electrolytes and composite-electrodes. Herein, this paper focuses on the overview of spark plasma sintering to fabricate solid electrolytes and composite-electrodes for all-solid-state batteries. In the end, future opportunities and challenges associated with SPS technique for all-solid-state batteries are described.

CVD에 의한 $SnO_2$ Film 제조시 증착조건이 Film의 증착속도 및 물리적 성질에 미치는 영향 (Effects of Deposition Conditions on the Deposition rate and physical properties of $SnO_2$ film produced by CVD)

  • 이동윤;이상래
    • 한국표면공학회지
    • /
    • 제18권3호
    • /
    • pp.116-124
    • /
    • 1985
  • Chemical vapor deposition of $SnO_2$ on Pyrex glass substrate has been investigated using $SnCl_4$ and Oxygen at relatively low temperatures(300-500$^{\circ}C$). The critical flow rate, which delineated the surface reaction controlled region from the mass transfer controlled region, was increased with deposition temperature. The apparent activation energy obtained in surface reaction controlled region was about 6Kcal/mole. The results show that deposition rate, electrical conductivity and transmittance were affected mainly by partial pressure of $SnCl_4$, but little by partial pressure f oxygen. The % transmission of 5000A-thick $SnO_2$ film was about 90% in visible spectrum region and sheet resistance was varied in 0.1-10${\Omega}$ per square shaped portion of the outer surface of the oxide.

  • PDF

열싸이폰을 이용한 잠열축열시스템의 성능실험(II) - 일정한 온도의 가열유체를 사용한 경우 - (Performance of a Latent Heat Storage System Using Two-Phase Closed Thermosyphon(II) - The Case of Constant Temperature Heating Fluid)

  • 김태일;김기현
    • 태양에너지
    • /
    • 제12권3호
    • /
    • pp.37-46
    • /
    • 1992
  • 상변화 물질로 Paraffin wax를 사용한 잠열축열 시스템의 축열성능을 실험을 통하여 조사하였다. 가열유체로는 ethylene glycol을 사용하였고 왁스로의 전열을 위해 열싸이폰을 사용하였다. 왁스의 유효열전도율을 높이기 위해 여러장의 구리망을 왁스에 넣었고 실험은 체적비 2%, 3%, 4%에 대해 유량을 변화시키며 수행하였으며 몇가지 주요결과는 다음과 같다. (1) 구리망은 열전도를 촉진시켜 왁스의 온도를 균일화 하는 역할을 한다. (2) 구리망수의 증가는 열전도를 향상시키는 반면 응해된 왁스의 대류작용을 억제한다. (3) 축열시스템에 최적인 구리망의 수가 존재하며 이 연구에서는 체적비로 나타낼 때 $3{\sim}4%$인 것으로 나타났다.

  • PDF

고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성 (Durability of MEA Using sPEEK Membrane Reinforced with Poly Imide in PEMFC)

  • 이혜리;나일채;오성준;박권필
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.296-301
    • /
    • 2017
  • 최근에 저가의 고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불소계 전해질 막 연구 개발이 활발히 진행되고 있다. 본 연구에서는 sulfonated poly (ether ether ketone) (sPEEK) 막의 내구성을 증가시키기 위해 PI 지지체를 이용한 강화 막을 제조하였다. 단일(비강화) 막전극합체(MEA)와 강화막 MEA의 내구성을 시험하기 위해 열화 가속화 기법을 이용하여 MEA 열화 실험을 진행하였다. 열화 전과 후에 I-V 분극곡선, 수소투과도, 전극 활성 면적, 막 저항과 부하 전달 저항을 측정하여 열화 전과 후를 비교하였다. 그 결과, 강화 MEA가 단일 MEA에 비해 수소투과전류밀도가 낮으며, 내구성이 높음을 확인하였다. 특히 열화 후 강화 MEA에서는 단일 MEA에서 나타난 쇼트 현상이 나타나지 않았다.

구리밀봉 증기발생기의 열적크기 계산을 위한 프로그램 개발 (Development of a Computer Program for Thermal Sizing of a Copper Bonded Steam Generator)

  • 김의광;김연식;어재혁;김성오;백병준
    • 에너지공학
    • /
    • 제12권2호
    • /
    • pp.84-92
    • /
    • 2003
  • 구리밀봉 증기발생기의 열적크기 계산을 위한 1차원 열수력코드를 개발하였다. 고온 및 저온측 전열관사이의 구리의 열전도는 1차원으로 가정하고, 전열관 피치의 함수로 열저항을 구하였다 물/증기측 유동영역은 아냉, 포화핵비등, 포화막비등, 과열영역의 4 구간으로 구분하였다. 매개변수 연구를 위한 전열관 갯수는 250에서 3500이며, P/D비율은 각각1.4, 1.6, 1.8로 하였다. 계산결과, 전열관 갯수가 2500일 때 전열관 길이는 약 12 m, 직경은 약 3 m이다. P/D를 증가시키면 구리에 의한 열저항 성분이 증가하지만 전열관 길이는 큰 차이가 없음을 알 수 있었다.

Size-homogeneous gold nanoparticle decorated on graphene via MeV electron beam irradiation

  • Kim, Yoo-Seok;Song, Woo-Seok;Jeon, Cheol-Ho;Kim, Sung-Hwan;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.487-487
    • /
    • 2011
  • Recently graphene has emerged as a fascinating 2D system in condensed-matter physics as well as a new material for the development of nanotechnology. The unusual electronic band structure of graphene allows it to exhibit a strong ambipolar electric field effect with high mobility. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85 % transmittance in the visible range (400?900 nm), the CVD-grown graphene electrodes have a higher/flatter transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition, for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10 ~ 15 nm in mean size were decorated along the surface of the graphene after 1.5 MeV-e-beam irradiation. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF