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A Study on Voltage Collapse Mechanism using Equivalent
Mechanical Model

Do-Hyung Kim, Heon-Su Ryu, Jong-Gi Lee and Young-Hyun Moon

Abstract - In this paper, an EMM(Equivalent Mechanical Model) is developed to explain the voltage collapse mechanism by re-
flecting the effects of reactive powers. The proposed EMM exactly represents the voltage instability mechanism described by the
system equations. By the use of the EMM model, the voltage collapse mechanism has been illustrated by showing the exactness of
the results. The stable region has been investigated with a reactive-power-controlled two-bus system, which shows that special
alerts are required when the system operates with leading power factor. It is also discussed a system transform technique to elimi-
nate the resistance component of the Thevenin equivalent impedance for practical applications. Finally, the results adopting the
proposed method for sample systems which were transformed are listed
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transfer.

1. Introduction

The voltage stability problem is now a serious concern
in large electric power systems. The continuing intercon-
nection of bulk power system has led to experience abnor-
mally low voltage and voltage collapse phenomena. With
difficulty in expanding of electric utility due to economic
and environmental limitations, the power system occasion-
ally operates even closer to the limits of stability.

The voltage problems are related to the increased load-
ing of transmission lines, and insufficient local reactive
power supply. The voltage instability also attributed to the
lack of reactive compensation or control. Voltage collapse
phenomena have many complicate aspects with various
time frames from several seconds to several decades of
minutes. This brought about many arguments on whether
the characteristics of voltage collapse is static or dynamic,
system intrinsic or system-load interacting. This is because
the voltage collapse mechanism is not clarified yet.

A majority of the work on the problem to date has been
focused on the static problem such as load flow feasibility,
optimal power flow, steady-state stability. Venikov et al.
[1] suggested voltage stability based on a stecady state sen-
sitivity analysis using a simple two bus system. Kwatny et
al. [2] studied the static problem as a static bifurcation of
loadflow equations and illustrated how bifurcation could
describe instability both in voltage and angle. Tamura et
al.[3] explained the voltage collapse by multiple load flow
solutions with the use of the relationships between the
voltage instability and closely-located solution pair. In the
modal analysis technique [5,6,7], several eigenvalues of

Manuscript received: Nov. 15, 2001 accepted: Jan. 9, 2002,

Do-Hyung Kim, Heon-Su Ryu, Jong-Gi Lee and Young-Hyun Moon
are with Dept. of Electrical Engineering, Yonsei Univ., Seoul, 120-749,
Korea.

the reduced Jacobian matrix close to the imaginary axis are
intensively investigated with their eigenvectors to show the
voltage collapse condition. Dobson and Chiang et al.[9]
discussed about the dynamics of voltage collapse claiming
that the voltage collapse results from as a dynamic conse-
quences of the bifurcation. Although there is extensive lit-
erature on voltage collapse, very few deal with the physical
mechanism of the voltage collapse phenomenon

This study attempts to develop an EMM model for the
voltage collapse mechanism. Since the voltage collapse
phenomenon is highly dependent on reactive powers, the
EMM model is developed to reflect the effects of reactive
powers by modifying the conventional model of mechani-
cal analogy for angular stability analysis.

This study shows that the proposed EMM exactly repre-
sents the voltage instability mechanism described by the
system equations. The proposed EMM model illustrates the
voltage collapse mechanism to provide some intuitive
physical meanings. The stable region has been investigated
with a reactive-power-controlled two-bus system, which
shows that special alerts are required when the system op-
erates with leading power factor.

Finally, practical applications are discussed with the use
of Thevenin’s equivalent circuit for the whole power sys-
tem seen from a load terminal. In this case, the Thevenin
equivalent impedance has non-negligible resistance. This
paper introduces a system transform technique presented in
Ref.[11,12] to eliminate the resistance. Test results are
listed.

2. EMM for Power Systems

Many attempts have been made to develop a visual
modeling of power system for stability analysis. The me-
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chanical analogy is the well-known model to give precise
concepts of the angular stability. Luders[10] suggested a
mechanical analogy system for a power system and derived
an energy function.

His mechanical analogy is developed with the strict re-
striction of constant voltage. In this paper, a mathemati-
cally exact EMM of multi-machine systems is systemati-
cally developed to apply to voltage stability analysis. In
order to explain the voltage collapse phenomenon highly
dependent on the reactive powers, an EMM model should
be developed to reflect the effects of reactive powers. The
EMM is developed first for a simple two-bus system, and
later generalized to be applicable to multi-bus systems with
the use of the classical generator model.

Consider the following two-bus system with a pure reac-
tive line. The generator is assumed to be of round-rotor
type. The internal reactance of the generator is considered
as a part of the line impedance. The system configuration
and its phasor diagram are shown in Fig. 1.
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(b) V-I Phasor Diagram
Fig. 1 Two-bus System with Pure Reactive Line

(a) System Configuration

The following EMM can be developed by slightly
modifying the conventional spring model in order to take
bus voltages as variables and to reflect reactive powers into
the EMM.

Qa/Vi -

where By=1/Xj
M; : Generator Inertia xcosay = Vi ~ Vjcosfy;
(a) EMM (b) Force Diagram
Fig. 2 Equivalent Mechanical Model

where xsinog; = Vjsinby;

Here, it should be noted that the lengths of both rods are
flexible like a pole of car antenna. Those lengths are de-
termined by the force balance at points A and B. The
lengths of Vi-rod and V; -rod represent the voltage magni-
tudes at the generator and load buses respectively. The ex-
actness of the above EMM can be verified by showing that
the dynamic equations of EMM agree exactly with the
power swing equations and the load flow equations for the
given power system. In the above force diagram, the mag-

nitudes of spring forces are given by

]Fij‘ = ‘Fji] =By 1)

where Bij(=1/X;) is the spring constant

Both of the force vectors can be represented with the di-
rectional unit vectors © and F as follows:

Fij = ‘Bin cosaijr - BUX sin otijﬂ

LV

= _Bij(Vi - Vj coseij)f' - BU JSiI'leije (2)

F}; = —Byjx cosB;if — By sinf;0
= Bl_](vl COSeij - Vj)f + BUV1 sinOijé (3)

The above equations can be easily proven by using the
trigonometric relations shown in Fig. 2(b). The force bal-
ance conditions at both points in the EMM give the follow-
ing dynamic equations:

Generator: VL[_ Miéi - Diéi +Pni — Vi Vj Sineij] =0 (4)
i
——QVGl - Bij(vi - VJ coseij) =0 (5)
i
P .
Load : '__Bjivi Slneji =0 (6)
Vi
Qi
———J—Bji(Vj—ViCOSGji)=0 @)

J

Here, it can be easily checked that the first two equations
describe exactly the power swing equations and reactive
power constraints at Bus i, and the last two, the load flow
equations at Bus j for the given power system.

The above EMM can be easily generalized for multibus
systems. For example, we will consider the following
three-bus system, which is the smallest system including
all types of buses. The line impedance are determined to
reflect the generator internal impedance by the bus elimi-
nation technique.

PLZ + QLZ

PL} + QL3

Fig. 3 Three-Bus System

By assuming 6 ; >6 ; >0 3, we can obtain the following
EMM for the above system with the impedance model. By
observing the force diagram in Fig.4, it can be shown that
the following force balance equation holds for arbitrary
point i
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Mifig . D\i/éi G = Pmi® —PLi® 3l Qgi +QVCi —Qui ;

i i j#i i

@®)
where i,j € {1,2,3}
Substitution of (2) into the above equation yields the fol-
lowing equations for each component.

(M}'éi + D,G,)/V, —(ij - PLi)/Vi _Z(—BUVJ sin eU) =0 (9)
st

DBy (V; = Vcos 01— (Qqi —Qci = Qui)/ Vi =0 (10)

j#

where &; =6;
M; =D; =Py =Qgi =0

for generator bus i
for load bus

Qv
“‘w/vl G2 Y2

reference

Fig. 4 EMM for Multibus System

From the above equations, it can be also easily checked
that the force balance equations agree exactly with the
power swing equations for a generator bus, and with real
and reactive power balance equations for a load bus. The
proposed EMM fully represents the system behavior of the
multimachine system with the classical generator model.
This implies that the voltage collapse mechanism may be
visualized by the proposed EMM.

3. Visual Modeling Of Voltage Collapse Mechanism

For the visual modeling of voltage collapse mechanism,
we will consider the following simple generator-load sys-
tem. The generator is represented by the classical model
with the round rotor type, and the load is assumed to be a
constant power load.
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Fig. 5 Generator - Load System

In order to calculate the steady state equilibriums, we
may assume the following input-output balance condition ;

Py =PL (n

By using (11), the following energy function can be de-
rived from the EMM in Fig.2 in terms of @, V and load
angle 0,

=1 Mo? +1iBV2 - -
E=-Mo®+3 BV? - BE Vcosfy ~ P 012 +Qp log(V/Vp) (12)
where 017 =90; ~67 :load angle

B=1/X,

The above energy function has equilibrium points which
can be given by the solution of the following partial equa-
tions.

E_o = Mo=0 (13)
oo
LY N BE(Vsin@yp =P =0 (14.2)
OE

E_o > Bv-BEScoselz+9VL=o (14.)

ov

The above equations are just the same as the load flow
equations, which have two solutions; one high-voltage so-
lution and the other low-voltage solution. Since the energy
function(12) well reflects the system behaviors of the
EMM, the equilibrium points can be visualized on the pro-
posed EMM. This gives a hint that the proposed EMM may
visualize the voltage collapse mechanism. By examining
the EMM carefully, we can easily find that the proposed
EMM has two equilibrium points. For the convenience of
the discussion, we will consider the case where the load
varies with a constant power factor.

To begin with, we examine the trajectory of the equilib-
rium points when the load varies with a constant power
factor. Fig. 6 shows the trajectories of equilibrium points
for the typical power factors. Fig.6(a) shows the case
where the power factor is unity. The equilibrium points
must liec on the half circle in order to make the angle be-
tween the force Py /V and the V-rod rectangular.

Q4/Eg

Q¢/Es

B
Fig. 6 Trajectory of Equilibrium Points with Constant
Power Factor

Fig. 6(b) shows the trajectory of equilibrium point when
the power factor is kept to be pf=cosp. In this case, the
angle o between the spring and the V-rod should be kept
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constant with o =90° +p . This means that the equilibrium
points must lie on an arc of a circle.

Behaviors of Equilibrium Points

With the above preliminaries, we can examine the be-
haviors of the equilibrium points by considering the load
fluctuation with a constant power factor. As mentioned
earlier, the proposed EMM has two equilibrium points as
shown in Fig.7. ( The equilibrium points can be obtained
by solving the load flow equations.) It is noted that the dot-
ted line must be parallel to the E-rod since both equilib-
rium points must satisfy

PL = BEst sinGle = BESVB SinelzB

Qg™/Es

Fig. 7 Equilibrium Points of the EMM with Constant
Power Factor

Say here that the load is increased by positive small per-
turbation AP, and AQp with constant power factor for a
short moment, and returns to the original load P and Qy .
Then, the incremental load APy and AQ; will increase the
length of the spring by moving the system equilibrium
downward along the arc.

Assume that the system state be on the equilibrium
point P, . Then the small perturbation AP; decreases the
load bus voltage, where the sensitivity of the load voltage
is much smaller than that of the spring length. Since the
load bus voltage is high enough at the equilibrium point
P, , it is guaranteed that the forces Py /v, and Q /v, do
not change significantly. Consequently, the small load in-
crease AP; moves the system state to a new state with a
little increased 675 . If the load returns to the original load
P, in the next step, then the system naturally returns to the
original state. We can say the same story with the nega-
tive AP, . Therefore, the point P, is a stable equilibrium
point.

Assume in the next that the system state be on the equi-
librium point Py in Fig. 7. Then, the small increase AP; in
the load causes the increase in the spring length. Here it is
noted that the voltage sensitivity is much greater than that
of the spring length, and thus the small increase in the
spring length causes a considerable reduction of the load

voltage. This considerable load voltage decrease brings
about a significant increase in the forces Py /vpg and
QL / Vg, since the voltage vy is low enough near point Pg.
Especially, the increase in the force Q; /Vvg further de-
crease the load voltage by directly forcing the system state
to move along the arc of circle. This secondary effect to the
load bus voltage accelerates the decrease of load bus volt-
age, which eventually results in the voltage collapse. When
we have a load perturbation of negative AP, , the load per-
turbation increase the load bus voltage with a compara-
tively big sensitivity. This increase in the load bus voltage
reduces both forces P, /vgand Q; /vy significantly. By a
similar way as given above, we can confirm that the nega-
tive APy forces the system state to move away from the
low voltage equilibrium. The system state never returns to
the low-voltage equilibrium after the load perturbation van-
ishes. Therefore, we can conclude that the low voltage
equilibrium is an unstable equilibrium.

In the above discussion, we show that the proposed
EMM can be utilized as a fine model to visualize the low-
voltage and high-voltage solutions in static voltage analysis
for the two-bus system. Here, it is noted that the above in-
terpretation of the voltage collapse by the proposed EMM
can be easily generalized for multibus systems by using the
EMM as shown in Fig.4. In order to confirm that the pro-
posed EMM can be used as an exact visual model for the
voltage collapse mechanism, it is necessary to show that
the EMM provides the exact voltage collapse condition
with the critical voltage.

Voltage Collapse Condition on the Proposed EMM

Regarding static voltage stability analysis, the voltage
collapse condition can also be derived by the use of the
energy function. The energy function method [13,14] is to
determine the system stability by comparing the energy
difference between unstable equilibrium points(UEPs) and
a stable equilibrium point(SEP). Approaching the SEP to
an UEP makes the energy difference zero and brings about
voltage collapse. When the SEP coalesces into an UEP, the
saddle node bifurcation phenomenon occurs. Consequently,
the energy function method provides the following voltage
collapse condition :

OE(x¢) _
— 0 (135)
P E(x,)
Sl Sl -4
ax2
where x= [m,G,V]T (16)

Equation(15) describes the equilibrium condition of the
system which yields a SEP and UEPs as the solutions.
Equation(16) represents the condition that the SEP coa-
lesces into an UEP, which can be considered as the actual
voltage collapse condition. The voltage collapse condition
can be visualized on the proposed EMM as shown in Fig.8.
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As the load increases with the constant power factor
pf=cosf , the pair of equilibrium points move to the right.
The voltage collapse occurs when the SEP and UEP even-
tually coalesce. At this moment, the triangle in the figure
becomes isosceles. By the use of the geometric relations in
Fig.8, the maximum load Py, and the critical voltage V¢
can be easily calculated as follows:

Maximum Load : Py .x = BEg(V, sin8°)

= BES(%tanGC) '

— L pE ? tan(ast - By (17)
2 2

Critical Voltage : V% + V2 -2V, V, cos(90° +B) = E2

E 1
Vo=
¢ \/5‘/1+sinﬁ

The above results can be easily checked by comparing
with those by the conventional methods (See Appendix).

(18)

*
47 UEP:

9
2 ?
[:}¢
L/
7
P

Fig. 8 Visualization of the Collapse Condition

4. Investigation Of Stable Region

The proposed EMM gives intuitive geometric relations
in voltage stability analysis, which can be utilized for the
practical application to the system operation. The follow-
ing examples illustrate the usefulness of the proposed
EMM for the operator’s conceptual understanding. From
now on , we will use the EMM diagram which is obtained
just by omitting the masses and the springs in the original
EMM.

Reactive-Power-Controlled 2-Bus System

Consider the voltage stability of 2-bus system with a ca-
pacitor bank to control the reactive power as shown in
Fig.9

E £0° X v

PLHiQ

Qe

Fig. 9 Reactive-Power Controlled 2-Bus System

Case 1) When the capacitor bank has limited capacity

In this case, the load bus voltage V can be controlled to
keep V=Vg unless the required reactive power exceeds the
maximum capacity ( Qumax )-

P

LITHR Pu Py Pl

(b) Nose Curve

(a) EMM diagram
Fig. 10 EMM and Nose Curve for the Q_ -Controlied System

Fig. 10(a) shows the stability region with the moves of
SEP and UEP positions as the load increases. The upper
half past is the stable region and the lower half part the
unstable by examining Fig.10(a), we can obtain the con-
ventional nose curve as shown in Fig.10(b). It is noted here
that equilibrium points do not follow the arc for the inter-
val Py <Py <P, ... . This is because the increase of load
continuously changes the power factor when the capacitor
bank supplies the maximum reactive power.

Case 2)When the capacity of the capacitor bank is big
enough

If the capacity of the capacitor bank is big enough, the
load bus voltage can be controlled to keep V = V5. Conse-
quently, we can draw the EMM diagram as given in Fig.11
to show the stability region.

* 7 Unstable

E(2 Region

Fig. 11 EMM Diagram with a Capacitor Bank of Enough
Capacity

In this case, one may think that the maximum transfer
power Pp .x calculated by (17), can be infinity since the
power factor cosp can be controlled. However, Eq.(17) is
derived without considering the load bus voltage. If we
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supply too much reactive power by the capacitor bank,
then the load bus voltage increases too high. Therefore, it
is required to keep the load voltage within the tolerance.
For simplicity of discussion, we assume that load bus volt-
age must be kept to the specified voltage. Then, the system
operating point moves alone the circle with radius Vg as
the load P increases. Since the capacitor bank is con-
trolled stepwise, load fluctuation makes the equilibrium
points move along an arc of the circle with constant power
factor. Consequently, the system has one stable equilibrium
and an unstable equilibrium point for each load level. If the
load increases toP ., then the coalescence of SEP and
UEP occurs, which directly brings about the voltage col-
lapse. Therefore, there is still a power transfer limit even
though the system has enough reactive power control ca-
pacity. The maximum power can be directly calculated
from the geometric relation of the EMM diagram

PLimax = BEgVgsin@ =BEgVs(y Vs2 —(Eg 12y’ /Vs)
=BEgyVZ-E2/4 (19)

The same result can be obtained from (A.9) and (A.11)
in the appendix.

For the special case where Vg =Eg , the maximum
power transfer 1s given by

_ V3 EgVs

PLmax = TT (20)

It is also interesting to observe what would happen when
the load is increased greater than P .. . In this case, we
can find a solution which satisfies the load flow equation.
The EMM diagram in Fig.11 shows that the solution is an
unstable solution. Moreover, we can easily confirm this
fact by checking the eigenvalues of the Jacobian matrix
(The reactive power equation must be considered with con-
stant Q¢ since Q¢ changes stepwise.). It is remarkable
that the voltage collapse may occur without any indication
of voltage drops when the system is operated with the lead-
ing power factor with enough reactive compensation facili-
ties. This requires special alert in the system operation with
leading power factors.

5. Applications

The voltage in stability problem can be interpreted as a
complicate parametric in stability with a number of load
parameters. The load parameters may vary individually.
However, it is impossible to consider the individual varia-
tions of load parameters in voltage stability analysis. In-
stead, two approaches are commonly adopted : one is to
assume that all loads vary with one load parameter for the
whole system, and the other is to assume that only one load
vary with all other loads remaining unchanged. For the
second approach, the proposed. EMM can be a useful tool

to analyze the voltage stability.

For simplicity, we assume here that all system loads be
constant impedance loads and remain unchanged except
the load at Bus i. Then, the system can be simplified by
using Thevenin’s theorem as shown in Fig.12. Thevenin
equivalent voltage can be determined by using the voltage
regulation ratio at the load terminal.

EiTh =(l+n,) [pu] @n
with 7, : voltage regulation ratio at bus

Here it is noted that R is not negligible since the sys-
tem includes resistive loads.

(b) Equivalent
Fig. 12 Thevenin Equivalent system

(a) Original system

The equivalent system has only one transmission line to
satisfy the uniform R/X ratio. Consequently, the equivalent
system can be transformed to eliminate the resistance by
using a method presented in Ref.[11,12]. The transformed
system can be easily obtained as follows:

Ko =X (A K)
NN

/i\ . .
AN P, +j0,

Fig. 13 Transformed System

In Fig.13, the transformed parameters are determined by

Xy =X, /(1+K}) ' (22)
Py, =P, -KQ,=P,(1-K, tan ) (23)
0, =0,+K.P, =0Q,(0+K,cotf) 24

Where Ki = R,.T}'/X,.Th

By using the transformed system, one can easily find
that the critical voltage at bus i is determined by (18).

y  BE" 1 m [pu] (25)
CV2 Jlsing V2-\[l+sing

where g : power factor of the load at bus i

Here it should be noted that Eq.(25) shows that the criti-
cal collapse voltage is directly related to the voltage regula-
tion ratio. The maximum power transferred to load at bus 7



12 A Study on Voltage Collapse Mechanism using Equivalent Mechanical Model

can be easily calculated by using (17) as follows : ;’ggggl
1 . 7y 24 O'.9220i 0.0215 | 0.6467 [32.0385 10.3819
rmax _ - Th\2 o_ Fi 26
PP = BI(E]")” tan(45°~ £ (26) 22400 +
h , 25 0.4720i 0.0451 | 0.6617 |28.8351 12.8728
where pl= /X,n, 13900 +
Li 26 0.1700i 0.0267 | 0.6500 {25.5886 18.4090
By using (23), we can calculate the actual maximum 27 2687150500? 00611 | 0.6687 [27.2341 9.6918
power transfer from the result of (26). 20600+ | ' ' '
- . 2 28 0.27601 0.0573 | 0.6694 {11.6330 5.6471
P;" =P /(I_K.'tan B) (7) 2.8350 +
. . . 29 0.2690i 0.0700 | 0.6775 | 11.4367 4.0341
The above algorithm is tested for some of various 0.0920 +
sample systems with heavy load conditions. The results are 31 0.04601 | 0.0025 | 0.5892 |10.4395| 113.4729
11.040 +

listed in the following tables. .
39 2.50001 0.3369 | 0.8464 118.9096 1.7128

Table 1 Results from IEEE 14-Bus System

The generator internal impedances are appropriately se-

BusNo.| F+jQ 7, Ve | Pros |Praa /Pro lected within 0.2 ~ 0.3 pu, and the power factors are as-
1 0 0.00000|0.70711|6.17665 - sumed to be no greater than 0.98 in case of heavy loads to
2| GAUAT [0.01137/0.58284(4.36347| 20.10814 bring about the voltage collapse.

0.9420 +
3 0.1900i 0.03220(0.65350{4.55709{ 4.83767
4 o0 10.00453)0.63598|4.97801| 10.41425 6. Conclusions
s | GUE0T {0.00260/0.63476(4.86120| 63.96313 .
R 0; For the mechanical analogy of the voltage collapse
6 0.0750i |0-01113/0.57311)2.41668) 21.57746 mechanism , an EMM model is developed to reflect the
9 0621965600{r 0.0358310.59988|2 17976]  7.38902 effects of reactive powers. 'T.he proposgd EMM .exactly
0 6900-1‘1- represents the voltage instability mechanism described by
10 0.0580; |0-01625/0.5788211.81930| 20.21449 the system equations, which enables us to visualize the
1| GO 10.00619]0.58936]1.87342| 53.52633 voltage collapse mechanism. o
0.0610 + The two bus system with reactive control facility is thor-
12 0.0160i 0.010780.63821|2.02357| 33.17323 oughly examined by the use of the EMM, which shows that
13 0010355800+ 0.0198510.61058(2.21791 16.42894 the voltage collapse may occur w1th0ut any infiication. of
0.1 49(); voltage drops when the system is operated with leading
14 0.0500i 0.029180.63381|1.76807| 11.86623 power factor, which require special alerts in system opera-
tions. Finally, practical applications are discussed with in-

Table 2 Results from IEEE 39-Bus System troduction of a system transform technique to eliminate the

BusNo| B +/Q, 7. V. P P, /P.s resmtance. in the Thevenin equivalent circuit seen from the
1 0 0 07071 119.3558 - load terminal concerned.

3.2200 +
3 0.02401 0.0421 | 0.6597 140.3553 12.5327
5.0000 + .
4 1.84001 0.1041 | 0.6730 [40.4097 8.0819 References
2.3380 + ) . )
7 0.8400i | 0.0529 | 0.6436 [29.8526| 12.7684 [1] Venikov, V.A. Stroev, V.I. Idelchick and V.I. Tarasov,
5.2200 + " Estimation of Electric Power System Steady-state
8 01;‘7460%01 0.1200 | 0.6895 1304986,  3.8426 Stability in Load Flow Calculations,” IEEE Trans. on
12 0.8800i | 0.0431 | 0.5359 | 9.4285 | 21.4284 PAS, Vol. PAS-94, No.3, pp. 1034-1041, May 1975.
3.2000 + [2] H.G. Kwatny, A.K.Pasrija and L.Y. Bahar, "Static
15 1.5300i | 0.0728 | 0.6341 [38.9286] 12.1652 Bufurcations in Electric Power Networks: Loss of
3.2940 + Steady-State Stability and Voltage Collapse," IEEE
16 0.32301 0.0475 | 0.6632 |54.7037 16.6071 T 1 8-203
1.5800 + rans. on Power Systems, Vol.5, No.1, pp. 198-203,
18 0.3000i | 0.0264 | 0.6498 [38.5121| 24.3748 Feb. 1990.
6.8000 -+ [3] Y. Tamura, H. Mori and S. Iwamoto, "Relationship
20 21 -7(21-7’00001 0.1257 | 0.7127 115.2467)  2.2422 Between Voltage Instability and Multiple Load Flow
' 7 ) : . "
21 115001 | 0.0639 | 0.6388 |25.1836]  9.1911 Solutions in Electric Power Systems,", IEEE Trans.
23 24750+ | 0.0547 | 0.6484 | 18.4547 7.4565 on Power Apparatus and Systems, Vol. PAS-102, No.




Do-Hyung Kim, Heon-Su Ryu, Jong-Gi Lee and Young-Hyun Moon 13

5, May 1983.

[4] R.A. Schlueter, I. Hu, M.W. Chang and J.C. Lo, A.
Costi, "Methods for Determining Proximity to Volt-
age Collapse," IEEE Trans. on Power Systems, Vol.6,
No.1, pp. 285-292, Feb. 1991.

[5] B. Gao, G.K. Morison and P.O. Kundur, "Voltage Sta-
bility Evaluation Using Modal Analysis," IEEE Trans.
on Power Systems, Vol. 7, No. 4, November 1992

[6] N. Flatabe, R. Ognedal and T. Carlsen, "Voltage Sta-
bility Condition in a Power Transmission System
Calculated by Sensitivity Methods," IEEE Trans. on
Power Systems, Vol. 5, No. 4, November 1990.

[7] P.A. Lof, T. Smed, G. Anderson and D.J. Hill, "Fast

Calculation of a Voltage Stability Index," IEEE Trans.

on Power Systems, Vol. 7, No. 1, February 1992,

[8] Claudio A and Ca~nizares,"On Bifurcation, Voltage
Collapse and Load Modeling," IEEE Trans. on Power
Systems, Vol.10 ,No. 1 pp. 512-522, Feb. 1995.

[9] LDobson, H.D. Chiang, R.J.Thomas, J.S.Thorp and
L.Fekih-Ahmed, "On voltage collapse in electric
power systems", IEEE Trans. on Power Systems, vol.
5, No 2, May. 1990, pp.601-611.

[10] G. A. Luders, "Transient Stability of Multimachine
Power Systems via the Direct Method of Lyapunov,"”
IEEE Trans. Power App.Syst., Vol. PAS-90, NO.1,
p-23-35, JAN/FEB 1971.

[11] Y.H. Moon, E.H. Lee and T.H. Roh, “Development
of an Energy function Reflecting the Transfer Con-
ductance foe Direct Stability Analysis in Power Sys-
tems”, IEE Proc.-Gener. Transm. Distrib., Vol. 144,
No. 5, pp. 503-509, 1997.9.

[12] Y.H. Moon, B.H. Cho, T.H. Rho and B K. Choi, “The
Development of Equivalent System Technique for
Deriving an Energy Function Reflecting Transfer
Conductances,” IEEE Trans. on Power Systems,
Vol.14, No.4, pp.1335-1341, November 1999.

[13] N. A. Tsolas, A. Arapostathis and P. P. Varaiya,"A
Structure Preserving Energy Function for Power Sys-
tem Transient Stability Analysis,” IEEE Trans. on
Circuit and Systems, Vol. CAS-32, NO.10, p.1041-
1049, October 1985.

[14] A. R. Bergen and D. J. Hill, "A Structure Preserving
Model for Power System Stability Analysis,” IEEE
Trans. Power App. Syst., Vol. PAS-100, NO.1, p.25-
33, January 1981.

[15] C.L. DeMarco and T. J. Overbye, "An Energy Based
Security Measure for Assessing Vulnerability to
Voltage Collapse, " IEEE Trans. on Power Systems,
Vol.5, No.2, pp. 419-426, May 1990.

[16] T. J. Overbye and C. C. DeMarco, "Improved Tech-
niques for Power System Voltage Security Assess-
ment Using Energy Methods, "IEEE Trans. on Power
System, Vol.6. NO.4, pp. 1446-1452, Dec 1991.

[17] Y.H. Moon, “A New Approach to Derive an Energy
Integral for the Direct method of Stability Analysis in

Power Systems,” Journal of Electrical Eng. and In-
formation science, Vol.1, No.1, p.58-69, March, 1996.

[18] Y.H. Moon and E.H. Lee, “On the Identity of Static
Voltage Stability Analysis Method in Power Sys-
tems,” IASTED International Conference, April 1995.

[19] Y.H. Moon and E.H. Lee, “ Visualization of Voltage
Collapse Mechanism by the Direct Method based on
EMM,” TASTED/ISMM International Conference,
April 1996.

[20] Y.H. Moon, B.K. Choi and B.H. Cho, “Estimation of
Maximum Loadability in Power Systems By Using
Elliptic Properties of P-e Curve” IEEE WM 99,
p.677-682.

APPENDIX : Analysis of Voltage Collapse Condition

This appendix provides analysis of voltage collapse con-
dition for a 2-bus system given in Fig.5 by using various
approaches. It is assumed that the load varies with constant
power factor, that is

= _dop Al
tanf3 T (A1)

For a 2-bus system, the elimination of variable 8, from
the load flow equations yields

2
P2 +(QL + sz) = B?Eg2V? (A2)

Sensitivity Analysis
From (A.2),we can obtain the following derivative :

wv P +(QL + BV2)tanB

dp, 2
2y BT QL 2
2 B

(A.3)
The voltage collapse condition that d%PL=°° in the
sensitivity analysis gives
2
Es _yv2, (A4)
2 B

In order to get the critical load, we can eliminate Q, and
V from (A.2) by using (A.1) and (A.4), which yields

B2Eg*

P 2 +BEg tanpP - =0 (A.5)

Equation (A.5) gives the following critical load (or
maximum load) '

Pl max = —%BESZ tanB+%BEsz\/l+ tan’ B

_ lBESZ(l_ smB]
2 cosf

=12 o B
=3 BEg tan(45 2) (A.6)
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Successive substitution of (A.1) and (A.6) into (A4)
yields the following critical voltage

Eg B
Ve =—F—+,[1- tan[45°——) tanf}
W2 2
_Eg 1
JZ_ 1+sinf

Both of the results (A.6) and (A.7) agree with (17) and
(18) derived by the EMM approach

(A7)

Energy Function Approach
The collapse condition(16) by the energy function gives

M[BESVCOSBQ(B—Q—;‘)—(BES sinBlz)Z:!=0 (A.8)
\'%

By using the load flow equations, (A.8) can be rewritten
as

B2V =p 2 +Q, 2 =(1+tan2 B)PL2

B2 = LL (A9)

cosP

- By eliminating Q; and V in (A.2) with the use of (A.1)
and (A.9), we can obtain

2
t 1 BE
L p24oplanPp 2, P 2=—S5p
2
cos” B cosf cos” B cosp

(A.10)

By solving (A.10), we can easily calculate the maximum
load as follows :

p _ cosP BES2
Lmax T ysing 2

=lBEsz(1—sinBJ
2 cosp

By substituting (A.7) into (A.9), we can obtain the fol-
lowing critical voltage

_Eg \ll—sinB
- f cosf
Eg i
V2 Ji+sinp

The above results also agree with those by the proposed
EMM approach. It can be found in the literature[ 18] that all
of the various approaches to voltage stability analysis are
based on the unique identity of the system.

(A.11)

Ve

(A.12)
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