• Title/Summary/Keyword: Energy Supply/Demand Prediction

Search Result 33, Processing Time 0.021 seconds

Energy Demand/Supply Prediction and Simulator UI Design for Energy Efficiency in the Industrial Complex (산업단지 에너지 효율화를 위한 에너지 수요/공급 예측 및 시뮬레이터 UI 설계)

  • Hyungah Lee;Jong-hyeok Park;Woojin Cho;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.693-700
    • /
    • 2024
  • As of the end of March 2022, the total area of domestic industrial complexes is 606 km2, which is only about 0.6% of the total land area. However, as of 2018, the annual energy consumption of domestic industrial complexes is 110,866.1 thousand TOE, accounting for 53.5% of the country's total energy consumption and 83.1% of the entire industrial sector energy consumption. In addition, industrial complexes have a significant impact on the environment, accounting for 45.1% of the country's total greenhouse gas emissions and 76.8% of industrial sector greenhouse gas emissions. Under this background, in this study, in order to contribute to the energy efficiency of industrial complexes, a prediction study on energy demand and supply for an industrial complex in Korea using machine learning was conducted. In addition, a simulator UI screen was designed to more efficiently convey information on energy demand/supply prediction results and energy consumption status. Among the machine learning algorithms, Multi-Layer Perceptron (MLP) was used, and Bayesian Optimization was applied as an optimization technique for the prediction model. The energy prediction model for the industrial complex built in this study showed a prediction accuracy of 87.90% for compressed air demand and 99.54% for the flow rate available for the public air compressor.

Machine Learning-based hydrogen charging station energy demand prediction model (머신러닝 기반 수소 충전소 에너지 수요 예측 모델)

  • MinWoo Hwang;Yerim Ha;Sanguk Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.47-56
    • /
    • 2023
  • Hydrogen energy is an eco-friendly energy that produces heat and electricity with high energy efficiency and does not emit harmful substances such as greenhouse gases and fine dust. In particular, smart hydrogen energy is an economical, sustainable, and safe future smart hydrogen energy service, which means a service that stably operates based on 'data' by digitally integrating hydrogen energy infrastructure. In this paper, in order to implement a data-based hydrogen charging station demand forecasting model, three hydrogen charging stations (Chuncheon, Sokcho, Pyeongchang) installed in Gangwon-do were selected, supply and demand data of hydrogen charging stations were secured, and 7 machine learning and deep learning algorithms were used. was selected to learn a model with a total of 27 types of input data (weather data + demand for hydrogen charging stations), and the model was evaluated with root mean square error (RMSE). Through this, this paper proposes a machine learning-based hydrogen charging station energy demand prediction model for optimal hydrogen energy supply and demand.

Customer Baseline Load Calculation using Time Series Prediction Technique in Energy Efficiency Programs (시계열 모델을 이용한 행동기반 에너지 효율화 프로그램의 고객기준부하 산정 방안)

  • Koh, Sae-Hyun;Joo, Sung-Kwan;Lee, Jae-Hee;Moon, Guk-Hyun;Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • As global demand for energy, energy prices, and power generation has increased worldwide, the government is turning to supply-oriented electricity supply and demand policies, such as behavior-based energy efficiency programs. In order to measure the implementation effect of the behavior-based energy efficiency program, the energy reduction must be accurately calculated by calculating the customer baseline load.

The Study on Prediction of Hot Water Extraction in a Thermal Energy Storage System (축열시스템의 온수이용 예측에 관한 연구)

  • Cho, W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.71-80
    • /
    • 1998
  • In thermal energy storage system, energy collected from many types of heat source is stored in a storage tank and then supply to load for demand. Lately, practical use of thermal energy storage system and attention to essential use of energy have been increased. From this point of view, especially, a study about the energy extraction process from a storage tank is necessary. So in this study, useful rate of hot water and hot water extraction efficiency was analysed respect to dynamic and geometric parameters dominating the hot water extraction process.

  • PDF

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

Development of models for the prediction of electric power supply-demand and the optimal operation of power plants at iron and steel works

  • Lee, Dae-Sung;Yang, Dae-Ryook;Lee, In-Beum;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.106-111
    • /
    • 1992
  • In order to achieve stable and efficient use of energy at iron and steel works, a model for the prediction of supply and demand of electric power system is developed on the basis of the information on operation and particular patterns of electric power consumption. The optimal amount of electric power to be purchased and the optimal fuel allocation for the in-house electric power plants are also obtained by a mixed-integer linear programming(MILP) and a nonlinear programming (NLP) solutions, respectively. The validity and the effectiveness of the proposed model are investigated by several illustrative examples. The simulation results show the satisfactory energy saving by the optimal solution obtained through this research.

  • PDF

Development of Supply Capability Calculation and Prediction Technology for Generator (발전기 공급능력 산정 및 예측 기술개발)

  • Kim, Euihwan;An, Youngmo;Hong, Eunkee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.425-431
    • /
    • 2016
  • Supply Capability of the generator, if the maximum demand occurs, refers to the maximum power that can be stably supplied and it is possible to maintain stable power supply to be greater than actual load. However, unexpected power demand and reduction in supply Capability due to stop of unexpected generator in operation can temporarily make a big chaos in power system. In fact, due to a lack of power supply Capability in the country, enforced emergency load adjustment to the September 15, 2011, the circulation power outage has occurred in several cities. As the result, interrupted operation of the elevator and stopped hospital medical equipment led to a great deal of trouble to people's lives, causing a social problem. At that time, it was found that a failed frequency control because of smaller actual supply Capability than that of predicted. The difference was about 1,170 MW with Gas turbine power plant. By accurately calculating the generator supply capability, we can not only grasp the power reserve rate, but also correspond to the time of power supply instability.

Evaluation of short-term water demand forecasting using ensemble model (앙상블 모형을 이용한 단기 용수사용량 예측의 적용성 평가)

  • So, Byung-Jin;Kwon, Hyun-Han;Gu, Ja-Young;Na, Bong-Kil;Kim, Byung-Seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and this has led to various studies regarding energy saving and improvement of water supply reliability. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The concepts was demonstrated through application to observed from water plant (A) in the South Korea. Various statistics (e.g. the efficiency coefficient, the correlation coefficient, the root mean square error, and a maximum error rate) were evaluated to investigate model efficiency. The ensemble based model with an cross-validate prediction procedure showed better predictability for water demand forecasting at different temporal resolutions. In particular, the performance of the ensemble model on hourly water demand data showed promising results against other individual prediction schemes.