• Title/Summary/Keyword: Energy Scenario

검색결과 527건 처리시간 0.127초

AMI 공격 시나리오에 기반한 스마트그리드 보안피해비용 산정 사례 (A Case Study of the Impact of a Cybersecurity Breach on a Smart Grid Based on an AMI Attack Scenario)

  • 전효정;김태성
    • 정보보호학회논문지
    • /
    • 제26권3호
    • /
    • pp.809-820
    • /
    • 2016
  • 스마트그리드는 사물인터넷의 핵심 응용서비스이고, 그 중 가장 핵심적인 구성요소인 AMI((Advanced Metering Infrastructure)는 전기사업자와 소비자의 접점에 위치하고 있으며, 스마트 미터는 소비자의 전기사용을 기록하고 사업자에게 전달하는 역할을 한다. 본 논문에서는 스마트그리드에서 소비자와 직접 맞닿아 있는 스마트 미터를 중심으로 AMI에 대한 NESCOR에서 제시하고 있는 사이버공격 및 피해 시나리오를 기반으로 피해비용을 산정한다. 본 연구의 결과는 정책입안자나 전기사업자가 스마트그리드 관련 투자의사결정을 하는데 참고가 될 수 있을 것이다.

Simulation of Multiple Steam Generator Tube Rupture (SGTR) Event Scenario

  • Seul Kwang Won;Bang Young Seok;Kim In Goo;Yonomoto Taisuke;Anoda Yoshinari
    • Nuclear Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.179-190
    • /
    • 2003
  • The multiple steam generator tube rupture (SGTR) event scenario with available safety systems was experimentally and analytically evaluated. The experiment was conducted on the large scaled test facility to simulate the multiple SGTR event and investigate the effectiveness of operator actions. As a result, it indicated that the opening of pressurizer power operated relief valve was significantly effective in quickly terminating the primary-to-secondary break flow even for the 6.5 tubes rupture. In the analysis, the recent version of RELAP5 code was assessed with the test data. It indicated that the calculations agreed well with the measured data and that the plant responses such as the water level and relief valve cycling in the damaged steam generator were reasonably predicted. Finally, sensitivity study on the number of ruptured tubes up to 10 tubes was performed to investigate the coolant release into atmosphere. It indicated that the integrated steam mass released was not significantly varied with the number of ruptured tubes although the damaged steam generator was overfilled for more than 3 tubes rupture. These findings are expected to provide useful information in understanding and evaluating the plant ability to mitigate the consequence of multiple SGTR event.

생물안전 3등급(BSL3)시설의 생물재해 시나리오에 따른 실내 공기환경예측에 관한 연구 (A Study on the Prediction of Indoor Environment in Bio Safety Level 3 Laboratory According to Biohazard Scenario)

  • 박현진;홍진관
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.745-750
    • /
    • 2010
  • Since the implementation of the LMO Law in Korea, the importance of the design qualification of BSL3 lab. is emphasizing. In this study, multizone simulation for three kind of biohazard scenarios using CONTAM is performed for design qualification of BSL3 lab. Also, in the case of unexpected spread of contaminants such as Influenza A virus(H1N1) in BL3 zone, the design qualification is carried out for diffusion and decontamination of contaminants according to differential pressure of BSL3 anteroom and door area of BSL3 lab. Also, in this study, appropriateness of laboratory room differential pressure and air flow rate to maintain pressure difference between laboratory rooms, and energy consumption due to air change rate variation according to door area in BL3 lab. Simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

해외 그린수소 공급망 경제성 분석 (Economic Feasibility Analysis of an Overseas Green Hydrogen Supply Chain)

  • 황해중;이예슬;권낙현;김수현;유영돈;이혜진
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.616-622
    • /
    • 2022
  • At the present time, interest in hydrogen is increasingly growing worldwide to tackle climate change. Korea also takes an action by announcing the first hydrogen economy implementation basic plan with the import targets of 22.9 million tons of hydrogen from oversea in 2050. To achieve this plan, it is very essential to establish an overseas hydrogen supply chain. In this paper, the study estimates the import price for hydrogen into basic scenario and comprehensive scenario, and also analyses economic feasibility considering price of the each technology.

Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4030-4048
    • /
    • 2022
  • In this study, road transportation tests were conducted with surrogate fuel assemblies under normal conditions of transport to evaluate the vibration and shock load characteristics of spent nuclear fuel (SNF). The overall test data analysis was conducted based on the measured acceleration and strain data obtained from the speed bump, lane-change, deceleration, obstacle avoidance, and circular tests. Furthermore, representative shock response spectrums and power spectral densities of each test mode were acquired. Amplification or attenuation characteristics were investigated according to the load transfer path. The load attenuated significantly as it transferred from the trailer to the cask. By contrast, the load amplified as it transferred from the cask to the surrogate SNF assembly. The fuel loading location on the cask disk assembly did not exhibit a significant influence on the strain measured from the fuel rods. The principal strain was in the vertical direction, and relatively large strain values were obtained in spans with large spacing between spacer grids. The influence of the lateral location of fuel rods was also investigated. The fuel rods located at the side exhibited relatively large strain values than those located at the center. Based on the strain data obtained from the test results, a hypothetical road transportation scenario was established. A fatigue evaluation of the SNF rod was performed based on this scenario. The evaluation results indicate that no fatigue damage occurred on the fuel rods.

에너지절약투자의 온실가스 배출 감소 효과 (The Effect of Energy-Saving Investment on Reduction of Greenhouse Gas Emissions)

  • 김현;정경수
    • 자원ㆍ환경경제연구
    • /
    • 제9권5호
    • /
    • pp.925-945
    • /
    • 2000
  • This paper analyses the impact of energy-saving investment on Greenhouse gas emissions using a model of energy demand in Korea. SUR method was employed to estimate the demand equation. The econometric estimates provide information about the energy price divisia index, sector income, and energy saving-investment elasticities of energy demand. Except for energy price divisia, the elasticities of each variable are statistically significant. Also, the price and substitution elasticities of each energy price are similar to the results reported by the previous studies. The energy-saving investment is statistically significant and elasticities of each sector is inelastic. Using the coefficient of energy-saving investment and carbon transmission coefficient, the amount of reduction of energy demand and the reduction of carbon emissions can be estimated. The simulation is performed with the scenario that the energy-saving investment increase by 10~50%, keeping up with Equipment Investment Plan of 30% increase in energy-saving investment by 2000. The results show that the reduction of energy demand measured as 11.2% based upon 1995's level of the energy demand, in industrial sector. Accordingly, the carbon emissions will be reduced by 11.3% based upon 1995's level of the carbon emissions in industrial sector.

  • PDF

Implementation of an Operator Model with Error Mechanisms for Nuclear Power Plant Control Room Operation

  • Suh, Sang-Moon;Cheon, Se-Woo;Lee, Yong-Hee;Lee, Jung-Woon;Park, Young-Taek
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.349-354
    • /
    • 1996
  • SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation.

  • PDF

The Role of Nuclear Power in Korea under Carbon Emissions Regulation

  • Lee, Man-Ki;Kim, Seung-Su;Moon, Kee-Hwan
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.651-656
    • /
    • 1997
  • Efforts are made to examine the role nuclear energy under the international carbon emissions regulation. To do so, an econometric model for energy demand and supply is developed. Here, several scenarios on the regulation are assumed and then each scenario is analyzed by using this model. This model also makes it Possible to analyze the effect of carbon tax. The results show that share nuclear increases up to 60% in 2020 Instead 45% makes GDP rise by 1.9% while the electricity price lower by 46% in carbon emission regulation.

  • PDF

Spectrum- and Energy- Efficiency Analysis Under Sensing Delay Constraint for Cognitive Unmanned Aerial Vehicle Networks

  • Zhang, Jia;Wu, Jun;Chen, Zehao;Chen, Ze;Gan, Jipeng;He, Jiangtao;Wang, Bangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1392-1413
    • /
    • 2022
  • In order to meet the rapid development of the unmanned aerial vehicle (UAV) communication needs, cooperative spectrum sensing (CSS) helps to identify unused spectrum for the primary users (PU). However, multi-UAV mode (MUM) requires the large communication resource in a cognitive UAV network, resulting in a severe decline of spectrum efficiency (SE) and energy efficiency (EE) and increase of energy consumption (EC). On this account, we extend the traditional 2D spectrum space to 3D spectrum space for the UAV network scenario and enable UAVs to proceed with spectrum sensing behaviors in this paper, and propose a novel multi-slot mode (MSM), in which the sensing slot is divided into multiple mini-slots within a UAV. Then, the CSS process is developed into a composite hypothesis testing problem. Furthermore, to improve SE and EE and reduce EC, we use the sequential detection to make a global decision about the PU channel status. Based on this, we also consider a truncation scenario of the sequential detection under the sensing delay constraint, and further derive a closed-form performance expression, in terms of the CSS performance and cooperative efficiency. At last, the simulation results verify that the performance and cooperative efficiency of MSM outperforms that of the traditional MUM in a low EC.

Can cities become self-reliant in energy? A technological scenario analysis for Kampala, Uganda

  • Munu, Nicholas;Banadda, Noble
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.219-225
    • /
    • 2016
  • Energy self-reliance is important for economic growth and development for any nation. An energy self-reliance technological analysis for Kampala the capital city of Uganda is presented. Three renewable energy sources: Municipal Solid Waste (MSW), solar and wind are assessed for the period of 2014 to 2030. Annual MSW generation will increase from $6.2{\times}10^5$ tons in 2014 to $8.5{\times}10^5$ and $1.14{\times}10^6$ tons by 2030 at 2% and 3.9% population growth respectively. MSW energy recovery yield varies from 136.7 GWh (2014, 65% collection) to 387.9 GWh (2030, 100% collection). MSW can at best contribute 2.1% and 1.6% to total Kampala energy demands for 2014 and 2030 respectively. Wind contribution is 5.6% and 2.3% in those respective years. To meet Kampala energy demands through solar, 26.6% of Kampala area and 2.4 times her size is required for panel installation in 2014 and 2030 respectively. This study concludes that improving renewable energy production may not necessarily translate into energy self-reliant Kampala City based on current and predicted conditions on a business as usual energy utilization situation. More studies should be done to integrate improvement in renewable energy production with improvement in efficiency in energy utilization.