• Title/Summary/Keyword: Energy Review

Search Result 2,209, Processing Time 0.029 seconds

Metabolic Components of Energy Expenditure in Growing Beef Cattle - Review -

  • Caton, J.S.;Bauer, M.L.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.702-710
    • /
    • 2000
  • A large portion of total energy expenditure associated with ruminant livestock production goes towards maintenance. Approximately 55% of whole body energy use is consumed by visceral tissues (including internal organs) with the majority of this going to the liver and gastrointestinal tract. Muscle and adipose tissues consume about 27% of total body energy expenditure. Metabolic components within the viscera responsible for the majority of energy consumption include ion transport, protein turnover, substrate cycling, and urea synthesis (liver). Within muscle tissue of growing animals ion transport and protein turnover account for most of the energy expenditure. Protein synthesis consumes approximately 23% of whole body energy use and visceral tissues account for proportionally more of whole body protein synthesis than skeletal muscle. Research efforts focused on improving energetic efficiency of the tissues and metabolic mechanisms responsible for the majority of whole animal energy expenditure should provide information leading to more efficient production of an edible product.

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

The Energy-efficiency Analysis of Companies in Korea Using DEA (DEA를 활용한 국내 기업의 에너지효율성 분석)

  • Moon, Hana;Min, Daiki
    • Korean Management Science Review
    • /
    • v.32 no.3
    • /
    • pp.37-54
    • /
    • 2015
  • This paper suggests energy efficiency which can be the foundation on corporate profit and effective energy management following by change of global climate and of energy-related regulations. Using comparable financial information and information related to energy use, an DEA (Data Envelopment Analysis) model has been used to identify energy efficiency with DMU (Decision Making Unit)s which are companies subjected to reduce greenhouse gas emission in 2009. Through this research, different from existing researches, environmental variables which can influence on energy efficiency are identified. The results show as follows. First, most of companies follow IRS, which means scale of economy exists among units so that they have more opportunity to increase efficiency by increasing scale of inputs. Second, this research identified that depending on the difference of environmental characters such as the emission structure and the size of companies, energy efficiency of the companies turns out differently.

Design review on indoor environment of museum buildings in hot-humid tropical climate

  • Ogwu, Ikechukwu;Long, Zhilin;Okonkwo, Moses M.;Zhang, Xuhui;Lee, Deuckhang;Zhang, Wei
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.321-343
    • /
    • 2022
  • Museum buildings display artefacts for public education and enjoyment, ensuring their long-term safety and the comfort of visitors by following strict indoor environment control protocols using mechanical Heating, Ventilation and Air Conditioning (HVAC) systems to keep the (environmental) variables at a fixed comfort level. Maintaining this requires constant supply of energy currently mostly sourced from the combustion of fossil fuels which exacerbates climate change. However, a review on the effects of the indoor environmental variables on museum artefacts as well as museum visitors revealed that there is no specific point at which artefact deterioration occurs, and that there are wide ranges of conditions that guarantee the long-term safety of artefacts and human comfort. Visits to museum buildings in hot-humid tropical climate of Nigeria revealed that strict indoor environmental practices were adopted. Even when appropriate micro-climatic conditions are provided for artefacts, mechanical HVAC systems remain necessary for visitor comfort because almost no consideration is given to natural ventilation. With the current global push towards energy management, this paper reviewed passive environmental control practices, architectural design strategies, and discusses the adaptation of double skin façade with jali screens, and the notion of smart materials, which can satisfy the range of requirements for the long-term safety of artefacts and levels of human comfort in buildings in hot-humid tropical climate, without mechanical HVAC systems. This review would inspire more discussions on passive, energy efficient, smart and climate responsible popular architecture, challenging current thinking on the impact of the more accepted representative architecture.

Methods to Predict Demand for Workforce in New & Renewable Energy Industry (신.재생에너지 인력수요전망 방법론 및 사례 연구)

  • Lee, You-Ah;Heo, Eunn-Yeong
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.36-45
    • /
    • 2011
  • Prediction of demand for workforce in new and renewable energy is precondition for sustainable growth of an industry. The purpose of this research is to review prediction methods and case studies of workforce in new and renewable energy industry. This research compares the three methods in the focused on possibility of applying in renewable energy industry; survey, input-output and labor function estimation methods. Also, three cases are reviewed in the focused on applied method; Korea, America and Australia. As a result, the survey method was wildly used in the new and renewable industry. Also the improvement rates of work force are difference depending on the methodology. This result can be applied to set up the policy of human resource development of renewable energy.

Review of energy saving system for DC Electric Railway (DC전철구간에서의 에너지 절약시스템에 대한 고찰)

  • Kim Yong-Ki;Yoon Hee-Taek;Mok Jai-Kyun;Chang SeKy
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.290-295
    • /
    • 2004
  • Electrification of existing railroad as well as extension of double track, need a large amount of electric energy. Especially, increase in energy consumption of high cost causes much problems in domestic economy. It is neccessary to save energy for the crisis of exhaust of fossil energy. About $20{\~}25\%$ of regenerated energy of an electric railcar is lost on down slope run or on braking. In order to save energy in electric railway system, Therefor, application of energy regeneration system is proposed and introduced in the present paper.

  • PDF

A Review of Electrochemical Hydrogen Compressor Technology (전기화학적 수소 압축기 기술)

  • KIM, SANG-KYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

Trends in Mobile Network Energy-Saving Technology (모바일 네트워크 에너지 절감 기술 동향)

  • S. Jung;S.-E. Hong;J. Na
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.26-35
    • /
    • 2023
  • Energy efficiency is an important factor toward sustainable future mobile network systems. As the size of the 5G mobile network system increases, the consumption and costs of energy increase. Accordingly, energy-saving optimization has become a major process in network systems, and various related technologies for energy saving are being developed. We provide a brief review of the technical trends in energy saving in 3GPP 5G & 5G Advanced systems and O-RAN systems. We focus on power models and energy-saving technologies in various resource domains of 3GPP 5G & 5G Advanced systems and energy-saving use cases of O-RAN systems.

The Relationship Between Three-Level Review System and Audit Quality: Empirical Evidence from China

  • TANG, Kai;YAN, Sibei;BAE, Khee Su
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.135-145
    • /
    • 2022
  • To improve audit quality, certain Chinese auditing firms have added a third-level review by an additional signing auditor to the general evaluation by a signing auditor team consisting of an engagement auditor and a partner. Nonetheless, our research-based on 36,033 firm-year observations from 2004 to 2019 reveals that compared to the general review system, auditor teams under the three-level review system are less likely to issue modified audit opinions when abnormal financial conditions arise. This finding suggests that, while larger auditor teams' knowledge, experience, and information advantages can theoretically sharpen their judgment, their performance is more susceptible to interference from divergent opinions, the diffusion of responsibility, and lower energy invested by individual auditors, ultimately impairing their judgment regarding the audited enterprises' abnormal financial conditions. That is, the three-level review system, which aims to improve audit quality, actually worsens audit quality. This conclusion remains valid after the problems of heteroscedasticity and endogeneity are addressed by using firm-level cluster robust standard errors and two-stage regression. We hope that our research will draw the attention of auditing firms, prompting them to reconsider the rationality of the three-level review system.

CANDU Energy System Design and Safety - a Status Review

  • Meneley, D.A.
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.171-178
    • /
    • 1993
  • The CANDU nuclear-electric generating system, developed in Canada beginning in about 1950, has reached full maturity with 22 units operating in other countries, and 13 units under construction, as shown in Table 1. Production and economic performance of modern CANDU units is competitive with other nuclear generating stations in the world. The safety record of these plants is excellent; their level of safety protection against severe accidents is at least equal to that of other commercial designs.

  • PDF