• Title/Summary/Keyword: Energy Resolution

Search Result 1,076, Processing Time 0.031 seconds

Analysis of Building Energy using Meteorological Numerical Simulation Data over Busan Metropolitan Areas (부산지역에서의 기상 수치모의 자료를 이용한 건축물 에너지 분석)

  • Lee, Kwi-Ok;Kim, Min-Jun;Lee, Kang-Yeol;Kang, Dong-Bae;Park, Chang-Hyoun;Lee, Hwa-Woon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.503-510
    • /
    • 2014
  • To estimate the benefit of high-resolution meteorological data for building energy estimation, a building energy analysis has been conducted over Busan metropolitan areas. The heating and cooling load has been calculated at seven observational sites by using temperature, wind and relative humidity data provided by WRF model combined with the inner building data produced by American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE). The building energy shows differences 2-3% in winter and 10-30% in summer depending on locations. This result implicates that high spatiotemporal resolution of meteorological model data is significantly important for building energy analysis.

A Numerical Study of Different Types of Collimators for a High-Resolution Preclinical CdTe Pixelated Semiconductor SPECT System

  • Jeong, Hyun-Woo;Kim, Jong Seok;Bae, Se Young;Seo, Kanghyen;Kim, Seung Hun;Kang, Seong Hyeon;Shin, Dong Jin;Lee, Chang-Lae;Kim, Kyuseok;Lee, Youngjin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2016
  • In single-photon-emission computed tomography (SPECT) with a pixelated semiconductor detector (PSD), not only pinhole collimators but also parallel-hole collimators are often used in preclinical nuclear-medicine imaging systems. The purpose of this study was to evaluate and compare pinhole and parallel-hole collimators in a PSD. For that purpose, we paired a PID 350 (Ajat Oy Ltd., Finland) CdTe PSD with each of the four collimators most frequently used in preclinical nuclear medicine: (1) a pinhole collimator, and (2) low-energy high-resolution (LEHR), (3) low-energy general-purpose (LEGP), and (4) low-energy high-sensitivity (LEHS) parallel-hole collimators. The sensitivity and spatial resolution of each collimator was evaluated using a point source and a hot-rod phantom. The highest sensitivity was achieved using LEHS, followed by LEGP, LEHR, and pinhole. Also, at a source-to-collimator distance of 2 cm, the spatial resolution was 1.63, 2.05, 2.79, and 3.45 mm using pinhole, LEHR, LEGP, and LEHS, respectively. The reconstructed hot-rod phantom images showed that the pinhole collimator and the LEHR parallel-hole collimator give a fine spatial resolution for preclinical SPECT with PSD. In conclusion, we successfully compared different types of collimators for a preclinical pixelated semiconductor SPECT system.

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

Effect of the Number of Detectors on Performance of Industrial SPECT (산업용 SPECT의 검출기 개수가 영상 해상도에 미치는 영향 평가)

  • Park, Jang Guen;Kim, Chan Hyeong;Kim, Jong Bum;Moon, Jinho;Jung, Sung-Hee
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.325-330
    • /
    • 2011
  • To predict the details of flow in industrial process unit, single photon emission computed tomography (SPECT) is a promising technique. Recently, industrial SPECT based on medical system has developed by researchers of the Korea Atomic Energy Research Institute (KAERI) and Hanyang University. In the present study, to confirm the effect of the number of detectors on image quality, and determine the optimal number of detectors in industrial SPECT, industrial SPECT system with various geometries were evaluated by the Monte Carlo simulation. CsI(Tl) detectors ($12mm{\times}12mm{\times}20mm$) with collimators (the geometric resolution of collimator $R_g$ was 4 cm at the center of the 30 cm diameter cylindrical vessel object) were modeled in a hexagonal array, and the point sources of $^{99m}Tc$, $^{68}Ga$, and $^{137}Cs$ were simulated at the center of the cylindrical vessel object using the MCNPX code. Then, the reconstruction images of each geometry were reconstructed using the expectation maximization (EM) algorithm. In this study, the reciprocity theorem was used to improve computation time required for system matrix of the EM algorithm. The result shows that the resolution of the reconstructed image was significantly improved by increasing the number of detectors in industrial SPECT system and more than 60 detectors will be required for the resolution of the reconstructed image.

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

A Study of the Potential Interference of ArC+ on the Direct Determination of Trivalent Chromium and Hexavalent Chromium Using Ion Chromatography Coupled with ICP-MS

  • Nam, Sang-Ho;Park, Young-Il;Kim, Jae-Jin;Han, Sun-Ho;Kim, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.447-451
    • /
    • 2004
  • Low and high resolution inductively coupled plasma mass spectrometry (ICP-MS) coupled with ion chromatography (IC) has been investigated for speciation of Cr(III) and Cr(VI). In particular, the interference of ArC^+formed by the carbon in a sample on the simultaneous determination of Cr(III) and Cr(VI) has been studied. In chemical speciation, this study shows that quadrupole type ICP-MS with low resolution has a limitation of simultaneous determination fo chromium species if the sample contains the carbon elements. The interference problems can be solved by high resolution ICP-MS.

Image Reconstruction with Prior Information in Electrical Resistance Tomography

  • Kim, Bong Seok;Kim, Sin;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • Electrical resistance tomography (ERT) has high temporal resolution characteristics therefore it is used as an alternative technique to visualize two-phase flows. The image reconstruction in ERT is highly non-linear and ill-posed hence it suffers from poor spatial resolution. In this paper, the inverse problem is solved with homogeneous data used as a prior information to reduce the condition number of the inverse algorithm and improve the spatial resolution. Numerical experiments have been carried out to illustrate the performance of the proposed method.

High Resolution Photonic Force Microscope Using Resonance Energy Transfer

  • Heo, Seung-Jin;Kim, Ki-Pom;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.288-288
    • /
    • 2010
  • Photonic Force Microscope (PFM) is a scanning force microscope using an optical trap with several piconewton. In PFM, we can have topological information from the bead position trapped in optical trap. Typically the resolutions of lateral and vertical position are 40 nm and 50 nm respectively. To improve the vertical resolution below 10 nm, we use resonance energy transfer which has 5nm resolution in distance. Here we show preliminary results, including performances of scanning bead and fluorescence imaging system.

  • PDF

The Establishment of a High Resolution(1Km×1Km) Wind Energy Map Based on a Statistical Wind Field Model (통계적 바람장모형에의한 고해상도(1Km×1Km)풍력에너지지도 작성에 관한 연구)

  • Kim, Hea-Jung;Kim, Hyun-Sik;Choi, Young-Jean;Byon, Jae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1157-1167
    • /
    • 2010
  • This paper details a method for establishing a wind energy map having($1Km{\times}1Km$) resolution. The map is essential for measurement and efficiency-testing of wind energy resources and wind site analysis. To this end, a statistical wind field model is estimated that covers 345,682 regions obtained by $1Km{\times}1Km$ lattices made over South Korea. The paper derives various characteristics of a regional wind energy resource under the statistical wind field model and estimates them to construct the wind energy map. Kolmogorov-Smirnov test, based on TMY(typical meteorological year) wind data of 76 weather station areas, shows that a Log-normal model is adequate for the statistical wind field model. The model is estimated by using the wind speed data of 345,682 regions provided by the National Institute of Meteorological Research(NIMR). Various wind energy statistics are studied under the Log-normal wind field model. As an application, the wind energy density(W$/m^2$) map of South Korea is constructed with a resolution of $1Km{\times}1Km$ and its utility for the wind site analysis is discussed.

Feasibility Study of Data Acquisition System based on Oscilloscope for Radiation Detector (방사선 검출기용 데이터획득장치로서의 오실로스코프 활용 가능성 평가)

  • Yang, Jingyu;Kang, Jihoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1804-1809
    • /
    • 2017
  • A data acquisition (DAQ) system based on oscilloscope was developed and evaluated for radiation detector. The dedicated LabVIEW program that perform the oscilloscope control and the data process was developed. Triggered events for each analog channel were acquired and the output signals were subsequently digitized and recorded for offline processing. Radiation pulse generation circuit was developed to evaluate the intrinsic characteristics of DAQ system. Energy linearity and energy resolution performances were assessed by voltage-peak channels and FWHM obtained from Gaussian fit, respectively. Radiation detector consists of LYSO and GAPD array. The 16 output signals were multiplexed by the RCD networks, and they were fed into the custom-made preamplifiers. Voltage-peak channels was linearly changed as a function of input voltage and the estimated coefficient of determination ($R^2$) was 0.999. No considerable changes in voltage resolution were observed. All 16 crystals were clearly identifiable on the resulting flood image and the mean energy resolution was ~15.1%. This study demonstrated that it is feasible to develop the DAQ system based on oscilloscope and LabVIEW program for radiation detector and the proposed approach offers opportunities to build simple DAQ system in various radiation measurement field.