• 제목/요약/키워드: Energy Reduction

검색결과 5,066건 처리시간 0.029초

실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 - (A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University)

  • 김석영;박문서;이현수;김수영;정혜진
    • 한국건설관리학회논문집
    • /
    • 제14권4호
    • /
    • pp.55-64
    • /
    • 2013
  • 온실가스 에너지 목표관리제가 시행됨에 따라, 해당 사업장은 2020년까지 온실가스 배출 전망치 대비 30% 이상을 의무적으로 감축해야 한다. 에너지소비의 큰 비중을 차지하는 대학교 부문 역시 온실가스 감축이 요구됨에도 불구하고, 교육기관의 특성 상 에너지 절감에 투자할 수 있는 예산은 한정적이므로 고가의 대응책 적용에는 한계가 따른다. 따라서 본 연구는 서울대학교 관악캠퍼스를 대상으로 실 레벨에서 쉽게 적용 가능한 저가의 에너지감축 방안을 도출하고, 이를 통한 최대감축잠재량을 산정하는 사례연구를 목적으로 한다. 먼저, 관악캠퍼스 내 표본이 될 11개 용도의 실을 뽑아 1월 1일부터 7월 31일까지 에너지소비량을 매일 실측하였고, 실별 전력기기 계수 조사를 통해 실용도별 표준모형을 구축하였으며, 사용자 인터뷰와 설문 및 행정조사를 통해 전력소비패턴을 분석함으로써 실용도 표준모형 기반의 기기별 소비전력량을 산출하였다. 이를 기반으로, 32개의 감축기술 및 실천프로그램을 도출하여 실용도 표준모형에 적용하고 각 프로그램별 최대감축비율을 기기별 소비전력량에 곱해 기기별 최대감축량을 유도함으로써, 실별 월별 최대감축량과 관악캠퍼스 최대감축잠재량을 산정하였다. 그 결과, 본 연구가 제안한 감축기술 및 실천프로그램의 적용 시 1월부터 7월까지 약 $5,311tCO_2$-eq 즉 동일기간 관악캠퍼스 전체 에너지 사용량의 12.66%에 해당되는 양을 감축할 수 있으며, 2016년까지 서울대학교 필요감축량의 24.48%를 감축할 수 있는 것으로 조사되었다.

파이로프로세싱을 위한 전해환원 공정기술 개발 (Electrochemical Reduction Process for Pyroprocessing)

  • 최은영;홍순석;박우신;임현숙;오승철;원찬연;차주선;허진목
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.279-288
    • /
    • 2014
  • 원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다. 용융염 전해공정을 이용하는 파이로프로세싱은 사용후핵연료에 존재하는 장 반감기 고독성 원소와 고방열 핵종을 분리하여 고준위 폐기물을 줄이면서도 고속로의 원료물질을 공급하고, 소듐냉각고속로에서는 이를 이용하여 전력을 생산한 후 다시 그 사용후핵연료를 파이로프로세싱에서 원료물질로 가공하는 개념이다. 파이로프로세싱의 전단부에 해당하는 전해환원 공정은 산화물 형태의 사용후핵연료를 금속으로 전환시켜 후속 공정인 전해정련공정에 금속을 공급하는 역할을 한다. 파이로프로세싱을 위한 전해환원 공정의 상용화를 위해서는 고용량, 고효율의 시스템 개발이 요구되므로 양극과 음극에서 공정 속도의 영향을 미치는 인자를 연구하였다.

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • 제18권4호
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.

산화-환원 싸이클 조업에 의한 고순도 수소생성 (High Purity Hydrogen Production by Redox Cycle Operation)

  • 전법주;박지훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

착의량과 실내설정온도 관계에 따른 난방에너지 및 온실가스저감량 평가 연구 (A Study on the Estimation of Heating Energy and CO2 Reduction depending on a Indoor Set Temperature and Clo value)

  • 이철성;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.49-54
    • /
    • 2010
  • Most energy using in building part is mainly consumed for heating and cooling to meet occupancy's comfort temperature. Generally, heating energy consumption show high value than cooling energy in Korea because of high temperature difference in winter season as compared with summer in apartment building. The efforts to develope mechanical performance have been studied to reduce energy consumption in building energy field until now. However, the energy consumption in building is impacted by not only system performance but also PMV particularly at temperature and Clo value. This means that energy consumption can be changed by occupancy's comfort setting temperature in apartment building. This study investigated the passibility of overheating in apartment building by occupant' slow Clo and its setting temperature from preceding research and then the heating energy consumption by setting temperature was calculated with ESP-r. The effects of heating energy and $CO_2$ reduction are also evaluated quantitatively with Clo value. The results showed that keeping ISO-7730 standards can reduce heating energy up to 21% in compared with option 2; also, wearing underclothes with ISO-7730 standard can considerably reduce heating energy consumption up to 50%. As compared with option 2, the reduction of $CO_2$ emission for option 3 showed 0.63TCO2 of kerosene, 0.49TCO2 of LNG and 1.09TCO2 of electricity. The option 4 can be reduced by 1.48TCO2 of kerosene, 1.16TCO2 of LNG and 2.57TCO2 of electricity respectively.

TGA를 이용한 Fe2O3/ZrO2의 환원/물 분해/공기산화 kinetic 연구 (Kinetics Study on the Reduction with Methane, Oxidation with Water and Oxidation with Air of Fe2O3/ZrO2 Using TGA)

  • 남현우;강경수;배기광;김창희;조원철;김영호;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.168-177
    • /
    • 2011
  • A set of kinetics study on the reduction with $CH_4$, oxidation with steam and oxidation with air was performed for $Fe_2O_3/ZrO_2$. $Fe_2O_3/ZrO_2$ was prepared by aerial oxidation method. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) with different reacting gas concentrations and temperatures. The obtained activation energy of reduction by methane, oxidation by water and oxidation by air are 219 kJ/mol, 238 and 20 respectively.

매체순환식 가스연소기용 산소공여입자들의 환원반응성에 미치는 $CO_2$ 농도의 영향 (Effect of $CO_2$ Concentration on Reduction Reactivity of Oxygen Carriers for Chemical-looping Combustor)

  • 류호정;이승용;김홍기;박문희
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.245-255
    • /
    • 2009
  • Effect of CO$_2$ concentration on reduction reactivity of oxygen carrier particles for chemical-looping combustor were investigated. Four particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN702-1250, were used as oxygen carrier particles and two kinds of gases (CH$_4$, 5%, N$_2$ balance and CH$_4$ 5%, CO$_2$ balance) were used as reactants for reduction. For all oxygen carrier particles, higher maximum conversion, reduction rate, oxygen transfer capacity, and oxygen transfer rate were achieved when we used N$_2$ balance gas. OCN601-650 particle showed higher oxygen transfer rate for all gases than other particles, and therefore we selected OCN601-650 particle as the best candidate. For all particles, lower carbon depositions were observed when we used CO$_2$ balance gas.

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

망간단괴 용융환원 제련공정의 물질 및 열수지 모델링 (A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules)

  • 조문경;박경호;민동준
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.304-310
    • /
    • 2009
  • Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

한국인 수유부의 체조성 변화 및 에너지 평형 (Maternal Changes of Body Composition and Energy Balance in Korean Lactating Women)

  • 임현숙
    • Journal of Nutrition and Health
    • /
    • 제29권8호
    • /
    • pp.899-907
    • /
    • 1996
  • This study was conducted to examine how Korean women mange energy metabolism during lactation. Eighteen women recruited were healthy, had normal pregnancies and were required to breast-feed their babies exclusively for at least 12wks. During the study period, all subjects were visited and interviewed five times : 3d, 9d, 4wk, 8wk, and 12wk lactation. Body composition variables were analyzed by a bioelectrical impedance method, energy intakes were assessed by using the inventory-weighing method, energy expenditure were determined by recording daily activities, and milk energy output was investigated from the amount of milk production and the gross energy content of milk. The subjects consumed less energy than current recommended allowance all over the study period, but compatible with fairly adequate lactational performance. They responded the additional energy stress of lactation by enhancing metabolic efficiency, increasing energy intakes, reduction physical activities and mobilizing body reserves. Another finding in this study was that the reduction in body fat-free mass may be the one way that women meet the energy demands of lactation like the reduction in body fat mass. The results from this study suggest that current recommended additional energy need during lactation, 2.09MJ/d(500kcal/d), is too high for healthy Korean women. Our data also indicate that the changes of body composition and energy balance at earlier postpartum are extremely different from those at later periods.

  • PDF