Browse > Article

A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules  

Cho, Moon Kyung (Yonsei University, Department of Metallurgical Engineering)
Park, Kyung Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM), Mineral Resources Research Division)
Min, Dong Joon (Yonsei University, Department of Metallurgical Engineering)
Publication Information
Korean Journal of Metals and Materials / v.47, no.5, 2009 , pp. 304-310 More about this Journal
Abstract
Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.
Keywords
manganese nodule; smelting reduction; heat and mass balance; thermodynamic modeling; energy efficiency;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 V. E. Mckelvey, N. A. Wright, and R. W. Rowland, Marine and Geology Oceanography of the Pacific Manganese Nodule Province, New York, Plenum (1979)
2 S. H. Lee, Ms. Thesis, Yonsei University, Seoul (2001)
3 J. S. Park, Ms. Thesis, Yonsei University, Seoul (2003)
4 M. Ishikawa, CAMP-ISIJ 8, 172 (1995)
5 T. Kohga, M. Imamura, J. Takahashi, N. Tanaka, and T. Nishizawa, JOM 12, 40 (1995)
6 D. J. Min, W. S. Chung, and J. M. Beak, J. Kor. Inst. Met. & Mater. 35, 237 (1997)
7 E. T. Turkdogan, Physical Chemistry of High Temperature Technology, p.5-24, Academic press, New York (1980)
8 H. Fukushima, W. Shinichi, T. Takeharu, and K. Iwasaki, CAMP-ISIJ 8, 171 (1995)
9 O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed., Pergamon press, p.378-384, Oxford (1979)
10 J. S. Park, K. H. Park, and D. J. Min, J. Kor. Inst. Met. & Mater. 41, 260 (2003)
11 K. Iwasaki, H. Fukushima, O. Yamase, and K. Takahasi, CAMP-ISIJ 8, 170 (1995)
12 M. Tokuda, Chinese Society of Metals, 9, 22 (1986)
13 D. H. Kim, Ms. Thesis, Yonsei University, Seoul (2000)
14 Y. S. Kim, Y. J. Park, and M. K. Park, Refining of nonferrous metals (1985)
15 D. J. Min, S. H. Song, W. S. Chung, T. D. Kim, and I. O. Lee, J. Kor. Inst. Met. & Mater. 30, 1186 (1992)
16 S. H. Lee, S. M. Moon, J. H. Park, and D. J. Min, Metall. Mater. Trans. B. 33B, 55 (2002)   DOI   ScienceOn
17 M. K. Cho, Ms. Thesis, Yonsei University, Seoul (2005)
18 F. Oester and A. Saatic, Process Technology Proceedings of ISS 6, 1021 (1987)
19 F. Oester and A. Saatic, Sthahl and Eisen Report, Mass and Heat Balance, Stahlleisen mbH, Dusseldorf (1987)