• Title/Summary/Keyword: Energy Platform

Search Result 554, Processing Time 0.028 seconds

Model Test of a TLP Type of Floating Offshore Wind Turbine, Part II

  • Dam, Pham Thanh;Seo, Byoung-Cheon;Kim, Jae-Hun;Shin, Jae-Wan;Shin, Hyunkyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.2-38.2
    • /
    • 2011
  • A large number of offshore wind turbines with fixed foundations have been installed in water depths up to 30 meters supporting 3-5MW wind turbines. Some floating platform concepts of offshore wind turbines were designed to be suitable for deployment in water depths greater than 60 meters. However the optimal design of this system in water depth 50 meters remains unknown. In this paper, a 5-MW wind turbine located on a TLP type platform was suggested for installation in this water depth. It is moored by a taut mooring line. For controlling the wind turbine always be operated at the upwind direction, one yaw controlling was attached at the tower. To study motion characteristics of this platform, a model was built with a 1/128 scale ratio. The model test was carried out in various conditions, including waves, winds and rotating rotor effect in the Ocean Engineering Wide Tank of the University Of Ulsan (UOU). The characteristic motions of the TLP platform were captured and the effective RAOs were obtained.

  • PDF

TECHNICAL REVIEW ON THE LOCALIZED DIGITAL INSTRUMENTATION AND CONTROL SYSTEMS

  • Kwon, Kee-Choon;Lee, Myeong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.447-454
    • /
    • 2009
  • This paper is a technical review of the research and development results of the Korea Nuclear Instrumentation and Control System (KNICS) project and Nu-Tech 2012 program. In these projects man-machine interface system architecture, two digital platforms, and several control and protection systems were developed. One platform is a Programmable Logic Controller (PLC) for a digital safety system and another platform is a Distributed Control System (DCS) for a non-safety control system. With the safety-grade platform PLC, a reactor protection system, an engineered safety feature-component control system, and reactor core protection system were developed. A power control system was developed based on the DCS. A logic alarm cause tracking system was developed as a man-machine interface for APR1400. Also, Integrated Performance Validation Facility (IPVF) was developed for the evaluation of the function and performance of developed I&C systems. The safety-grade platform PLC and the digital safety system obtained approval for the topical report from the Korean regulatory body in February of 2009. A utility and vendor company will determine the suitability of the KNICS and Nu- Tech 2012 products to apply them to the planned nuclear power plants.

Accuracy of incidental dynamic analysis of mobile elevating work platforms

  • Jovanovic, Miomir L.J.;Radoicic, Goran N.;Stojanovic, Vladimir S.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.553-562
    • /
    • 2019
  • This paper presents the results of a study into the dynamic behaviour of a support structure of a mobile elevating work platform. The vibrations of the mechanical system of the observed structure are examined analytically, numerically, and experimentally. Within the analytical examination, a simple mathematical model is developed to describe free and forced vibrations. The dynamic analysis of the mechanical system is conducted using a discrete dynamic model with a reduced number of vibrational degrees of freedom. On the basis of the expression for the system energy, and by applying Lagrange's equations of the second kind, differential equations are derived for system vibrations, frequencies are determined, and the laws of forced platform vibration are established. At the same time, a nonlinear FEM model is developed and the laws of free and forced vibration are determined. The experimental and numerical part of the study deal with the examination of the real structure in extreme conditions, taking into account: the lowest eigenfrequency, forced actions that could endanger the general stability, the maximal amplitudes, and the acceleration of the work platform. The obtained analytical and numerical results are compared with the experiments. The experimental verification points to the adverse behaviour of the platform in excitation cases - swaying. In such a situation, even a relatively small physical force can lead to unacceptably high amplitudes of displacement and acceleration - exceeding the usual work values.

Pre-Feasibility Study of Stand-Alone Hybrid Energy System for Applications in a Lab (실험실용 독립형 하이브리드 에너지 시스템의 가능성 연구)

  • Li, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.627-631
    • /
    • 2009
  • As renewable and sustainable energy, solar energy and wind energy have advantages in reducing the pollution sources. The paper presents a hybrid system which includes the solar cell and the wind generator. HOMER provides a platform to design and simulate the power system and then to choose the optimization results. This paper simulates with the HOMER and performs a pre-feasibility study of stand-alone hybrid energy systems for applications in a lab.

Development of Simulation Model Based Optimal Start and Stop Control Daily Strategy (시뮬레이션 모델기반 냉난방 설비 일별 최적 기동/정지 제어기법 개발)

  • Lee, Chanwoo;Koo, Junemo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • This work aims to develop a platform to investigate the effect of operation schedules on the building energy consumption and to derive a simulation model based optimal start and stop daily strategy. An open-source building energy simulation tool DOE2 is used for the engine, and the developed simulation model is validated using ASHRAE guideline 14. The effect of late-start/early-stop operation of HVAC system on the daily building energy consumption was analyzed using the developed simulation model. It was found that about 10% of energy consumption cut was possible using the control strategy for an hour of advance of the stop operation, and about 3% per an hour of delay of the start operation.

Low-power Scheduling Framework for Heterogeneous Architecture under Performance Constraint

  • Li, Junke;Guo, Bing;Shen, Yan;Li, Deguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2003-2021
    • /
    • 2020
  • Today's computer systems are widely integrated with CPU and GPU to achieve considerable performance, but energy consumption of such system directly affects operational cost, maintainability and environmental problem, which has been aroused wide concern by researchers, computer architects, and developers. To cope with energy problem, we propose a task-scheduling framework to reduce energy under performance constraint by rationally allocating the tasks across the CPU and GPU. The framework first collects the estimated energy consumption of programs and performance information. Next, we use above information to formalize the scheduling problem as the 0-1 knapsack problem. Then, we elaborate our experiment on typical platform to verify proposed scheduling framework. The experimental results show that our proposed algorithm saves 14.97% energy compared with that of the time-oriented policy and yields 37.23% performance improvement than that of energy-oriented scheme on average.

Experimental Study on Application of an Optical Sensor to Measure Mooring-Line Tension in Waves

  • Nguyen, Thi Thanh Diep;Park, Ji Won;Nguyen, Van Minh;Yoon, Hyeon Kyu;Jung, Joseph Chul;Lee, Michael Myung Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Moored floating platforms have great potential in ocean engineering applications because a mooring system is necessary to keep the platform in station, which is directly related to the operational efficiency and safety of the platform. This paper briefly introduces the technical and operational details of an optical sensor for measuring the tension of mooring lines of a moored platform in waves. In order to check the performance of optical sensors, an experiment with a moored floating platform in waves is carried out in the wave tank at Changwon National University. The experiment is performed in regular waves and irregular waves with a semi-submersible and triangle platform. The performance of the optical sensor is confirmed by comparing the results of the tension of the mooring lines by the optical sensor and tension gauges. The maximum tension of the mooring lines is estimated to investigate the mooring dynamics due to the effect of the wave direction and wavelength in the regular waves. The significant value of the tension of mooring lines in various wave directions is estimated in the case of irregular waves. The results show that the optical sensor is effective in measuring the tension of the mooring lines.

A Study on the Expansion of Secondary Battery Manufacturing Technology through the Scale of V4 and Energy Platform (V4와 에너지 플랫폼 규모화를 통한 2차 전지 제조 기술 확대 방안)

  • Seo, Dae-Sung
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.87-94
    • /
    • 2022
  • This paper seeks to raise inflection points of battery manufacturing bases in Korea in the V4 region through the reorganization of new industrial technologies in accordance with ESG. As a result, the global supply chain market is cut off. The Russian-Ukraine war and the U.S.-China hegemony are competing in the economic crisis caused by COVID-19. It is showing diversification of new suppliers in an environment where mineral, grain procurement, gas, and even wheat imports from China and Russia are not possible. As a protective glocal, this area is used as a buffer zone(Pro-Russia, Hungary). to an isolated zone(anti-Russia, Poland) by war. In this paper, economic growth is expected to slow further due to the EU tapering period and high inflation in world countries. Due to these changes, the conversion of new tech industry and the contraction of Germany's structure due to energy supply may lose the driving force for economic growth over the past 20 years. This is caused by market disconnection(chasm) in the nominal indicators in this area. On the other hand, Korea should actively develop into the V4 area as an energy generation export (nuclear and electric hydrogen generation) area as a bypass development supply area due to the imbalance in the supply chain of rare earth materials that combines AI. By linking this industry, the energy platform can be scaled up and reliable supply technology (next generation BT, recycling technology) in diversification can be formed in countries around the world. This paper proves that in order to overcome the market chasm caused by the industries connection, new energy development and platform size can be achieved and reliable supply technology (next-generation battery and recycling technology, Low-cost LFP) can be diversified in each country.

A Study of the Planning for Development of Smart City Energy Service Module with Citizen Participation (시민참여형 스마트시티 에너지 서비스 모듈 개발 기획에 관한 연구)

  • Shim, Hong-Souk;Lee, Sung-Joo;Park, Kyeong-Min;Seo, Youn-Kyu;Jung, Hyun-Chae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.519-531
    • /
    • 2020
  • Global warming is accelerating as greenhouse gas emissions increase owing to the increase in population and urbanization rates worldwide. As an alternative to this solution, smart cities are being promoted. The purpose of this paper is to suggest a plan for developing energy service modules for the Sejong 5-1 living area, which has been selected as a test-bed for smart cities in Korea. Based on the smart city plans announced by the government for this study, a survey questionnaire on 12 energy services was composed by collecting the opinions of experts. The survey was conducted with 1,000 citizens, the degree of necessity of energy service that citizens think of was identified. Principal Component Analysis and Association Rule Mining were conducted to describe 12 energy service items in a reduced manner and analyze the correlation and relationship of each energy service. Finally, three modules were suggested using the analyzed results so that 12 energy services could be implemented in an efficient platform. These results are expected to contribute to the realization of a smart city to make them easily accessible for those who want to promote platform services in the energy field and envision energy service items.

BEPAT: A platform for building energy assessment in energy smart homes and design optimization

  • Kamel, Ehsan;Memari, Ali M.
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.321-339
    • /
    • 2017
  • Energy simulation tools can provide information on the amount of heat transfer through building envelope components, which are considered the main sources of heat loss in buildings. Therefore, it is important to improve the quality of outputs from energy simulation tools and also the process of obtaining them. In this paper, a new Building Energy Performance Assessment Tool (BEPAT) is introduced, which provides users with granular data related to heat transfer through every single wall, window, door, roof, and floor in a building and automatically saves all the related data in text files. This information can be used to identify the envelope components for thermal improvement through energy retrofit or during the design phase. The generated data can also be adopted in the design of energy smart homes, building design tools, and energy retrofit tools as a supplementary dataset. BEPAT is developed by modifying EnergyPlus source code as the energy simulation engine using C++, which only requires Input Data File (IDF) and weather file to perform the energy simulation and automatically provide detailed output. To validate the BEPAT results, a computer model is developed in Revit for use in BEPAT. Validating BEPAT's output with EnergyPlus "advanced output" shows a difference of less than 2% and thus establishing the capability of this tool to facilitate the provision of detailed output on the quantity of heat transfer through walls, fenestrations, roofs, and floors.