Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (No. 2019R1F1A1057551).
References
- Cevasco, D., Collu, M., Rizzo, C.M., & Hall, M. (2018). On Mooring Line Tension and Fatigue Prediction for Offshore Vertical Axis Wind Turbines: A Comparison of Lumped-mass and Quasi-static Approaches. Journal of Wind Engineering, 42(2), 97-107. https://doi.org/10.1177/0309524X18756962
- Chung, J.C, Lee, M.M.S., & Kang, S.H. (2021). A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics. Journal of Ocean Engineering and Technology, 35(4), 266-272. https://doi.org/10.26748/KSOE.2021.009
- Culshaw, B., & Kersey, A. (2008). Fiber-Optic Sensing: A Historical Perspective. Journal of Lightwave Technology, 26(9), 1064-1078. https://https://doi.org/10.1109/JLT.0082.921915
- Jiang, C., Moctar, O., & Parades, G.M. (2020). Validation of a Dynamic Mooring Model Coupled with a RANS Solver. Marine Structures, 72, 102783. https://doi.org/10.1016/j.marstruc.2020.102783
- Meltz, G., Morey, W.W., & Glenn, W.H. (1989). Formation of Bragg Gratings in Optical Fibers by Transverse Holographic Method. Optics Letters, 14(15), 823-825. https://doi.org/10.1364/OL.14.000823
- Hill, K.O., & Meltz, G. (1997). Fiber Bragg Grating Technology Fundamentals and Overview. Journal of Lightwave Technology, 15(8), 1263-1276. https://doi.org/10.1109/50.618320
- Lee, M., & Kim, H. (2011). Latest Development Status of FBG Sensors & Interrogator from Korea & Other Countries. Journal of Korean Society of Civil Engineers, 59, 84-90.
- Kim, H.C., Kim, I., Kim, Y.Y., Youn, D.H., & Han, S. (2016). Simulation and Experimental Study of a TLP Type Floating Wind Turbine with Spoke Platform. Journal of Advanced Research in Ocean Engineering, 2(4), 179-191. https://doi.org/10.5574/JAROE.2016.2.4.179
- Kim, M.H., Koo, B.J., Mercier R.M., & Ward, E.G. (2005). Vessel/Mooring/Riser Coupled Dynamic Analysis of a Turret-moored FPSO Compared with OTRC Experiment. Ocean Engineering, 32(14-15), 1780-1802. https://doi.org/10.1016/j.oceaneng.2004.12.013
- Montasir, O.A., Yenduri, A., & Kurian, V.J. (2015). Effect of Mooring Line Configurations on the Dynamic Responses of Truss Spar Platforms. Ocean Engineering, 96, 161-172. https://doi.org/10.1016/j.oceaneng.2014.11.027
- Natarajan, R., & Ganapathy, C. (1997). Model Experiments on Moored Ships. Ocean Engineering, 24(7), 665-676. https://doi.org/10.1016/S0029-8018(96)00006-6
- Paduano, B., Giorgi, G., Gomes, R.P.G., Pasta, E., Henriques, J.C.C., Gato, L.M.C., & Mattiazzo, G. (2020). Experimental Validation and Comparison of Numerical Models for the Mooring System of a Floating Wave Energy Converter. Journal of Marine Science and Engineering, 8(8), 525. https://doi.org/10.3390/jmse8080565
- Pan, W., Zhang, N., Huang, G., & Ma, X. (2018). Experimental Study on Motion Responses of a Moored Rectangular Cylinder under Freak Waves (I: Time-domain Study). Ocean Engineering, 153, 268-281. https://doi.org/10.1016/j.oceaneng.2018.01.084
- Pan, W, Liang, C., Zhang, N., & Huang, G. (2021). Experimental Study on Hydrodynamic Characteristics of a Moored Square Cylinder under Freak Waves (II: Frequency-domain sSudy). Ocean Engineering, 219, 108452. https://doi.org/10.1016/j.oceaneng.2020.108452