• Title/Summary/Keyword: Energy Pile

Search Result 221, Processing Time 0.026 seconds

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Estimation of Thermal Conductivity of Weathered Granite Soils (화강풍화토의 열전도도 산정에 대한 연구)

  • Park, Hyunku;Park, Hansol;Lee, Seung-Rae;Go, Gyu-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.69-77
    • /
    • 2012
  • In general, geothermal energy pile and horizontal ground heat exchangers are installed in shallower depths than conventional vertical ground coupled heat pumps. Consequently their heat exchange performance is strongly governed by thermal conductivity of soil layer. Previous studies have shown that the thermal conductivity of soil above ground water table significantly affects the heat exchange rate because of partially saturated condition in soil and consequent variation of soil thermal conductivity. This paper presents a study result on the prediction of thermal conductivity of weathered granite soils. For weathered granite soils sampled from 5 locations, thermal conductivity tests were conducted with varying porosity and degree of saturation. The existing thermal conductivity models in literatures appeared inappropriate to the weathered granite soils. Hence, an empirical equation was proposed in this paper and its validity was examined by applying it to thermal conductivity test results obtained for weathered granite soils in this study and from literatures.

Formulation of Fully Coupled THM Behavior in Unsaturated Soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.75-83
    • /
    • 2011
  • Emerging issues related with fully coupled Thermo-Hydro-Mechanical (THM) behavior of unsaturated soil demand the development of a numerical tool in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from three mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. With Galerkin formulation and time integration of these governing equations, finite element code is developed to find nonlinear solution of four main variables (displacement-u, gas pressure-$P_g$), liquid pressure-$P_1$), and temperature-T) using Newton's iterative scheme. Three cases of numerical simulations are conducted and discussed: one-dimensional drainage experiments (u-$P_g-P_1$), thermal consolidation (u-$P_1$-T), and effect of pile on surrounding soil due to surface temperature variation (u-$P_1$-T).

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

Changes of Physico-chemical Properties during the Composting of Korean Food Waste (음식물찌꺼기를 이용한 퇴비의 부숙과정중 이화학적 특성의 변화)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • This study was conducted to estimate the stabilization degree of compost which made from Korean food wastes. To make the compost, food wastes were mixed with dried paper sludge, sawdust and the rotten wood waste which had cultivated mushrooms, and then mixture was composted in $1.1m^3$ of chamber which installed with the blower for maintaining the aerobic condition. Y value, EC and pH were changed remarkably for the early stage of composting. These changes showed that the compost of food wastes could be stabilized within 30~35 days and that the substrate, food wastes, can be easily used as energy source for microorganisms. Although these phyico-chemical properties indicated that food wastes could be composted within 30 days during the composting, the temperature of pile maintained over $50^{\circ}C$ for 80 days, and C/N ratio decreased gradually for over 50 days. In conclusion, more than 50 days were required to stabilize the compost of food wastes.

  • PDF

A Study on the Inner tank Seismic Analysis Model for Calculation of Seismic Forces of LNG Storage Tank (LNG저장탱크 지진력 산정을 위한 내부탱크 지진해석 모델에 관한 연구)

  • Kim, Miseung;Lee, Kangwon;Kim, Junhwi;Yoon, Ihnsoo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2013
  • LNG(Liquefied Natural Gas) has been considered as the green energy. Thus, the demand of natural gas is keep increasing around the world, and various studies are actively under progress about the LNG storage tank. To calculate the seismic forces of actual LNG storage tank, FEM model has to include inner tank, outer tank, pile and soil to implement the interaction between structure and ground. So, this paper is represent the study about inner tank model of three cases using Malhotra method in EN 1998-4(European Standard). The results of calculation were compared, and the most suitable to inner tank model was suggested.

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

Spectrometry Analysis of Fumes of Mixed Nuclear Fuel (U0.8Pu0.2)O2 Samples Heated up to 2,000℃ and Evaluation of Accidental Irradiation of Living Organisms by Plutonium as the Most Radiotoxic Fission Product of Mixed Nuclear Fuel

  • Kim, Dmitriy;Zhumagulova, Roza;Tazhigulova, Bibinur;Zharaspayeva, Gulzhanar;Azhiyeva, Galiya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.274-284
    • /
    • 2016
  • Purpose: The purpose of this work is to describe the spectrometric analysis of gaseous cloud formation over reactor mixed uranium-and-plutonium (UP) fuel $(U_{0.8}Pu_{0.2})O_2$ samples heated to a temperature $>2,000^{\circ}C$, and thus forecast and evaluate radiation hazards threatening humans who cope with the consequences of any accident at a fission reactor loaded by UP mixed oxide $(U_{0.8}Pu_{0.2})O_2$, such as a mixture of 80% U and 20% Pu in weight. Materials and methods: The UP nuclear fuel samples were heated up to a temperature of over $2,000^{\circ}C$ in a suitable assembly (apparatus) at out-of-pile experiments' implementation, the experimental in-depth study of metabolism of active materials in living organisms by means of artificial irradiation of pigs by plutonium. Spectrometric measurements were carried out on the different exposed organs and tissues of pigs for the further estimation of human internal exposure by nuclear materials released from the core of a fission reactor fueled with UP mixed oxide. Results: The main results of the research described are the following: (1) following the research on the influence of mixed fuel fission products (radioactive isotopes being formed during reactor operation as a result of nuclear decay of elements included into the fuel composition) on living organisms, the authors determined the quantities of plutonium dioxide ($PuO_2$) that penetrated into blood and lay in the pulmonary region, liver, skeleton and other tissues; and (2) experiments confirmed that the output speed of plutonium out of the basic precipitation locations is very small. On the strength of the experimental evidence, the authors suggest that the biological output of plutonium can be disregarded in the process of evaluation of the internal irradiation doses.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test (LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Kwon, Oh-Sung;Jung, Sung-Jun;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.17-24
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.