• Title/Summary/Keyword: Energy Materials

Search Result 11,285, Processing Time 0.038 seconds

A Study on the Structural Analysis of Spiral Valve for Cryogenic Linear Expander (극저온 선형 팽창기용 나선형 밸브의 구조 해석에 관한 연구)

  • Yun, So Nam;Kim, Ji U;Yeom, Han Kil;Kim, Hyo Bong
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, a spiral valve which is used with a cryogenic linear expander and composed of plural plate coil shapes was examined. Generally, a spiral valve is well known for having excellent efficiency and low noise characteristics. In order to determine the movement characteristics and to investigate the limit of valve displacement, the stress variations according to the changes of operating pressure, displacement and workable temperature are discussed. From this examination, it is considered that the results of this study will significantly facilitate the design and development of a spiral valve for the cryogenic linear expander.

Size Control of Bismuth Nanoparticles by Changes in Carrier-Gas Flow Rate and Chamber Pressure of Gas Condensation Apparatus (가스응축장치 캐리어가스 공급속도 및 압력변화를 통한 비스무스 나노분말 입도제어)

  • Lee, Gyoung-Ja;Kim, Chang-Kyu;Lee, Min-Ku;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.379-384
    • /
    • 2010
  • In the present work, bismuth nanopowders with various particle size distributions were synthesized by controlling argon (Ar) gas flow rate and chamber pressure of a gas condensation (GC) apparatus. From the analyses of transmission electron microscopy (TEM) images and nitrogen gas adsorption results, it was found that as Ar gas flow rate increased, the specific surface area of bismuth increased and the average particles size decreased. On the other hand, as the chamber pressure increased, the specific surface area of bismuth decreased and the average particles size increased. The optimum gas flow rate and chamber pressure for the maximized electrochemical active surface area were determined to be 8 L/min and 50 torr, respectively. The bismuth nanopowders synthesized at the above condition exhibit 13.47 $m^2g^{-1}$ of specific surface area and 45.6 nm of average particles diameter.

The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Kim, Sung-Woo;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.164-170
    • /
    • 2010
  • Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium ($H_2$ 20pa, $H_2O$ 0.5pa, $CH_4$ 2pa and CO 5pa) at $950^{\circ}C$. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions (($H_2$ 20pa, $H_2O$ 0.05pa, $CH_4$ 5pa and CO 2pa) and $950^{\circ}C$) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

Study on the Properties of Catalase Activity Using Cuprite Nano-Particles Synthesized by Hydrolysis Method (가수분해법에 의해 제조된 아산화구리 나노분말을 이용한 과산화수소 탈수 연구)

  • Uhm, Y.-R.;Kim, W.-W.;Oh, J.-S.;Rhee, C.-K.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • $Cu_2O$ nano cubes with high catalase activity were synthesized by reduction of freshly prepared Cu in distilled water at $40^{\circC}$ and their catalase activities of $H_2O_2$ were studied. Transmission electron microscopy (TEM) observation showed that most of these nanocubes were uniform in size, with the average edge length of 30 nm. Selected area electron diffraction of TEM revealed that the nanocube consisted of single crystalline $Cu_2O$, but it changed to CuO phase. The catalase activity depends on the amount of both cuprite phase and surface area.

Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method (부양가스증발응축법에 의해 제조된 구리산화물 나노분말의 촉매 특성 연구)

  • Uhm, Y.-R.;Kim, W.-W.;Oh, J.-S.;Rhee, C.-K.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.64-69
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly $Cu_2O$, but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.

Development of Simple Bimodal Model for Charged Particle Coagulation (Bimodal 방법을 이용한 하전입자 응집 모델링)

  • Kim, Sang Bok;Song, Dong Keun;Hong, Won Seok;Shin, Wanho
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • A simple bimodal model has been developed to analyze charged particle coagulation by modifying previously suggested bimdal model for evolution of particle generation and growth. In the present model, two monodisperse modes are used and 40 charge nodes are assigned to each mode to account both change of the particle size and charge distribution. In addition, we also implemented the effect of electrostatic dispersion loss in the present model. Based on the developed model, we analyzed coagulation of asymmetric bipolar charged particles by computing evolutions of particle number concentration, geometric mean diameter of particles, charge asymmetric ratio and geometric standard deviation of particle size distribution for various initial charge asymmetric ratios. The number concentration of asymmetric bipolar charged particles decreases faster than that of neutral particles but that does not give faster growth of particles since the electrostatic dispersion loss overwhelms particle growth by coagulation.

Evaluation of Electric and Thermal Characteristics of Photovoltaic Module under Various Temperature and Irradiance Conditions (다양한 외부 환경에서의 태양전지모듈의 열적 전기적 특성 평가)

  • Kim, Kyung-Soo;So, Jung-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.125-130
    • /
    • 2010
  • Normally, PV system is designed using local weather condition like lowest and highest temperature and irradiance. But this might give misleading results because it is not realistic data of PV module itself. To give more specific description of PV system, we tested photovoltaic(PV) modules' temperature, irradiance and maximum power generation characteristics from January to December in 2008 for 3kW PV system. From this, we could deeply analyze the accumulation temperature, electrical characteristics of PV module in various condition. So precise approach to PV system design can be done. The detail description is specified as the following paper.

A Study on the Synthesis and Properties of Environmental Friendly Pressure Sensitive Adhesive for Manufacturing Electronic Products (전자제품 제조용 친환경 점착제의 합성과 물성에 대한 연구)

  • Cho, Ur Ryong;Oh, Ji Hwan;Kim, Ji Hyun;Jung, Hyeon Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2016
  • Toluene-free pressure sensitive adhesives were synthesized by using butyl acrylate (BA), 2-hydroxy ethyl acrylate, methyl methacrylate, acrylic acid (AA) as monomers and ethyl acetate as a solvent. The polymerization recipes were designed by changing 1, 3, 5 part per hundreds monomer (phm) of AA content on the basis of 100 BA parts. Two crosslinking agents, ethyl glycol diglycidyl ether (EDGE) and isophorone diisocyanate (IPDI) were added to the synthesized polymers to increase adhesion due to crosslinking. In the measurement of properties, holding power, peel strength, and initial tackiness increased with AA content due to crosslinking between carboxyl group in AA and epoxy group in EDGE and isocyanate group in IPDI. In the comparison of two crosslinking agents, EDGE showed better in the three properties than IPDI by better reaction of epoxy group of EDGE to carboxyl group of AA.