• Title/Summary/Keyword: Energy Loss

Search Result 3,505, Processing Time 0.031 seconds

Study on vibration energy characteristics of vehicle-track-viaduct coupling system considering partial contact loss beneath track slab

  • Liu, Linya;Zuo, Zhiyuan;Zhou, Qinyue;Qin, Jialiang;Liu, Quanmin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • CA mortar layer disengagement will give rise to the overall structural changes of the track and variation in the vibration form of the ballastless track. By establishing a vehicle-track-viaduct coupling analysis and calculation model, it is possible to analyze the CRTS-I type track structure vibration response while the track slab is disengaging with the power flow evaluation method, to compare the two disengaging types, namely partial contact loss at one edge beneath track slab and partial contact loss at midpoint beneath track slab. It can also study how the length of disengaging influences the track structures vibration power. It is showed that when the partial contact loss beneath track slab, and the relative vibration energy level between the rail and the track slab increases significantly within [10, 200]Hz with the same disengaging length, the partial contact loss at one edge beneath track slab has more prominent influence on the vibration power than the partial contact loss at midpoint beneath track slab. With the increase of disengaging length, the relative vibration energy level of the track slab grows sharply, but it will change significantly when it reaches 1.56 m. Little effect will be caused by the relative vibration energy level of the viaduct. The partial contact loss beneath the track slab will cause more power distribution and transmission between the trail and track slab, and will then affect the service life of the rail and track slab.

Pressure Loss Analysis of the 75 kW MCFC Stack with Internal Manifold Separator (75 kW 용융탄산염 연료전지 (MCFC) 스택 내 압력 손실 해석)

  • Kim, Beom-Joo;Lee, Jung-Hyun;Kim, Do-Hyeong;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.367-376
    • /
    • 2008
  • To obtain the data of the pressure loss and differential pressure at the inside of the stack that was composed of 126 cells with 7,500 cm2 electrode area, 75kW molten carbonate fuel cell system has been operated. Computational fluid dynamics was applied to estimate reactions and thermal fluid behavior inside of the stack that was adopted with internal manifold type separator. The pressure loss coefficient K showed 72.29 to 84.01 in anode and 6.34 to 8.75 in cathode at low part of cells at the inside of 75 kW MCFC stack respectively. Meanwhile, the pressure loss coefficient of the higher part of cells at the interior of the stack showed 15.36 and 56.44 in anode and cathode respectively. These results mean that there is no big total pressure difference between anode and cathode at the inner part of 75 kW MCFC stack. This result will be reflected in 250kW MCFC system design.

The Effect of an Energy Restriction Program on the Weight Loss and the Change of Biochemical nutritional Status in Obese Women

  • Son, Sook-Mee;Kim, Hee-Jun;Lee, Yoon-Na;Lee, Hong-Sup
    • Korean Journal of Community Nutrition
    • /
    • v.2 no.5
    • /
    • pp.695-700
    • /
    • 1997
  • This study was conducted to investigate the effect of an energy restriction program on the weight loss and changes of the biochemical nutritional status for 35 obese women. The energy restriction program took place over a 3-week period that was devided into two parts. The first part consisted of 750-800kcal diet and the second part of 800-1000kcal. Subjects were provided a low energy formula and a menu for the recommended diet. Anthropometric and biochemical measurement before and after the energy restriction program were estimated. Mean weight loss was 3.0kg, accordingly the obestiy rate was lowered from 40.2 to 34.4, BMI from 29.2 to 28.9 and fat weight from 23.3kg to 21.0kg( <0.01. <0.05). Waist circumference loss was most prominent(4.4%) compared to triceps(21% loss)and hip circumference(2.2%loss). Mean RBC count, hemoglobin and hematocrit were significantly lowered( <0.01) but they were in the normal range. Systolic blood pressure was significantly decreased from 124.1mmHg to 113.1mmHg . Mean SGOT and SGPT were lowered from 29.3u/L to 20.0u/L and from 28.7u/L to 16.6u/L, respectively. It seems that the 3 weeks of energy restriction program used in this study was effective in improving anthropometric measurements without producing deficiency of iron or other susceptible nutrients.(Korean J community Nutrition 2(5) : 695-700,1997)

  • PDF

A Comparative strudy on the Insulation Performance of the Super Window by Actual Survey and Simulation (초단열 슈퍼윈도우의 단열성능 실측과 시뮬레이션 비교 분석)

  • Kim, Chi-Hoon;Ahn, Byung-Lip;Jang, Cheol-Yong;Hong, Won-Hwa
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.231-235
    • /
    • 2009
  • According to flow of energy, the loss occurs through walls, roofs, windows and so on. Among these case, most of the loss that is about 45% occurs through windows. windows's U-value is six times higher than wall's one according to Building code, so the loss through windows accounts for very much rates. Currently, Exterior wall's U-value about building envelope is 0.35~0.58W/ mK, but windows's one is 3.3W/ mK. It means that the loss through windows occupy very much amounts relatively. Therefore, the solution is required to reduce energy loss and increasing displeasure caused by excessive influx of solar energy through windows, to solve the problems Like decoloration on indoor furniture an clothes by harmful ultraviolet rays, air conditioning and increased cost. Therefore, on this paper, Thermal Performance was evaluated through actual test about high insulation Super Window which can improve thermal performance and the Simulation result was compared with actual resul by using Simulation program WINDOW and THERM.

  • PDF

Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems (역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계)

  • Ham, Y.B.;Kim, Y.;Noh, J.H.;Shin, S.S.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

Analysis of Transmission Loss Characteristics on Generation Energy Resources (발전 에너지원별 송전손실 변동특성 분석)

  • NamKung, J.Y.;Moon, Y.H.;Oh, T.K.;Rim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.248-250
    • /
    • 2001
  • In this paper, marginal loss factors are calculated for 12 load cases that represent the impact of marginal network tosses on nodal prices at the transmission network connection points at which generators are located. Based on comparison analysis of marginal loss factors on generation energy resources, we can find the characteristics of each plants according to its energy resources in KOREA.

  • PDF

The Effect on Heat Loss Reduction in a refrigeration with the Variation of Gasket Shape (냉장고 가스켓 형상 변화에 따른 냉장고 열손실 저감 효과)

  • Ha, Ji-Soo;Jung, Kwang-Soo;Kim, Tae-Kwon;Kim, Kyung-Ho;Jeong, Gwan-Sik;Kim, Seok-Ro
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.286-291
    • /
    • 2008
  • Insulation of refrigerator with gasket material near door becomes the technical point at the aspect of heat loss and energy efficiency. Heat loss of refrigerator through the gasket is nearly 30%. In this paper, quantitative evaluation method of heat loss through gasket in established suggest the method for the improvement of heat loss. To analyze the heat transfer, we have used the common software Fluent that is used to CFD. Because of using the convection coefficient of heat transfer, we have solved only the equation of energy for heat transfer. As a result, we have known that heat loss flows through the heat flux vector and that the heat gathered out of the outside iron plate is transferred inner part through the gasket and ABS, etc. Through the result of the numerical simulation that use sub-gasket, we have known that we are able to reduce the heat loss about $20{\sim}40%$. when we applied that sub-gasket on a real refrigerator, the power consumption had reduced about 4.76%. In addition, when we applied a more improved sub-gasket on a real refrigerator and measured the power of the refrigerator the power consumption does reduce about 3% and we will try to apply the improved sub-gasket on a new models of refrigerator.

  • PDF

A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss (피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구)

  • Han, D.J.;Choi, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF

An Estimation of Head Loss Coefficients at Continuous Circular Manhole (연속 맨홀에서의 손실계수 산정)

  • Yoon, Young-Noh;Kim, Jung-Soo;Han, Chyung-Such;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.731-734
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at circular manholes are usually not significant. However, the energy loss at manholes, often exceeding the friction loss of pipes under surcharge flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharge flow. Hydraulic experimental apparatus with two circular manholes was installed for this study. The range of the experimental discharges were from $1.0\ell/sec$ to $4.4\ell/sec$. Head loss coefficient was maximum because of strong oscillation of water surface when the range of manhole depth ratios$(h_m/D_{in})$ were from 1,2 to 1.25. The average head loss coefficients for upstream manhole and downstream manhole were 0.58 and 0.23 respectively. Head loss at upstream manhole is nearly 2.5 times more than one at downstream manhole.

  • PDF