• Title/Summary/Keyword: Energy Harvesting Mechanism

Search Result 33, Processing Time 0.027 seconds

Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism (전자기유도방식의 에너지 하베스팅을 이용한 자가발전 무선 비상호출기 구현 연구)

  • Kim, Il-Jung;Choi, Yeon-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This paper describes the design and implementation of a electromagnetic energy harvesting mechanism and electronic circuit for autonomous emergency call system. This analysis results show the power output of the proposed harvesting mechanism and circuit up to max power output 5V and it can hold up to 65 msec of the power generation and 10msec of the RF transmission. Based on the these testing results, the implementation of autonomous emergency call device without battery power or any external power source is feasible.

Study on Mobile Wave Energy Harvesting System Utilizing Wave Glider Mechanism (웨이브 글라이더 메커니즘을 이용한 이동형 파력발전 시스템의 성능 테스트와 최적 설계에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.393-401
    • /
    • 2018
  • This paper reports a novel mobile-type wave energy harvesting system. The proposed system adopts a wave glider's propulsion mechanism. A wave glider's blades were mounted on a circular layout and generated a rotational motion. Combining the wave converting system with the wave glider, a mobile floating-type robotic buoy system was developed. It enabled the relocation of the buoy position, as well as station-keeping for long term operation. It had a small size and could efficiently harvest wave energy. A feasibility study and modeling were carried out, and a prototype system was constructed. Various tank tests were performed to optimize the proposed wave energy harvesting system.

A Perching Mechanism of a Quadrotor for Energy Harvesting (에너지 하베스팅을 위한 쿼드로터의 퍼칭 메커니즘 연구)

  • Choi, Hong-Cheol;Shin, Nae-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.198-204
    • /
    • 2018
  • Quadrotor with limited flight time due to battery level can have the extended mission life by applying energy harvesting technology. Bio-inspiration from the birds' locomotion of flight and perch-and-stare can make energy consumption efficient, and energy harvesting technology can generate energy. In order to charge the battery with solar power, the drones are required to be in a position without shade. In the mountainous terrain, a novel mechanism is required in order to be located stably at the top of the tree or the inclined rock. In this study, we propose an analysis of the origami structure and the concept design of the perching mechanism with two stable equilibrium states. The origami structure composed of compliant material can be applied to the perching mechanism that can be locked passively. Moreover, the experimental results of the trajectory and perching test are discussed.

Design of MAC Protocol for Improving Energy Efficiency and Reducing Transmission Delay in EH-WSN (EH-WSN에서 에너지 효율 향상 및 전송지연 축소를 위한 MAC 프로토콜 설계)

  • Park, Seok Woo;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recent research on energy harvesting wireless sensor networks focuses on the development of techniques to solve the limited energy resource problem and to extend the whole network life efficiently. Energy harvesting technology can increase the lifetime of a network, but data transmission becomes unavailable when it harvests energy from radio frequency, resulting longer network delay with respect to the increased time in energy harvesting. Therefore, building energy harvesting wireless sensor network should consider the possible network delay as well as the network lifetime problem. In this paper, we propose a new MAC protocol that minimizes end-to-end network delay by adjusting the data transmission time for a packet based on estimating the energy for data transmission along with the amount of traffic flowing into the network and harvested energy. For this goal, it engineers an energy management mechanism that adjusts the sleep time of the network by measuring energy harvesting time. In addition, with simulation results it shows that the proposed MAC protocol improves the performance in terms of energy consumption and end-to-end delay, compared to the existing MAC protocols.

Experiments on Piezoelectric Energy Harvesting Device (압전체를 이용한 에너지 수집 장치 실험)

  • Jung, Moon-San;Kwak, Moon-K.;Kim, Ki-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.360-368
    • /
    • 2007
  • This paper is concerned with the development of piezoelectric energy harvesting device. Literature survey was carried out to investigate the state-of-art technology regarding piezoelectric energy harvesting method. It shows that the piezoelectric energy harvesting system has been researched as the needs for the auxiliary power system grow for ubiquitous sensor node. In this study, the piezoelectric energy harvesting system was constructed and the corresponding electric circuit was also built to investigate the power characteristics. Experimental results show that it can charge the small battery with ambient vibrations but still needs an effective mechanism to collect ambient energies.

  • PDF

Development of Piezoelectric Energy Harvesting Device activated by Wind (바람에 의해 구동되는 압전에너지 수집 장치 개발)

  • Lee, Haeng-Woo;Kwak, Moon-K.;Yang, Dong-Ho;Lee, Han-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.76-77
    • /
    • 2009
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device using Wind. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a pinwheel and piezoelectric wafer was investigated in detail both theoretically and experimentally. The power output characteristics of the PEH was then calculated and discussed. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF

A Study on the Characteristic of Energy Harvesting Mechanism for Batteryless Wireless Switch (배터리없는 무선 스위치를 위한 에너지 하베스팅 메커니즘의 특성 연구)

  • Choi, Yeon-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3114-3120
    • /
    • 2014
  • Wireless emergency call switch used in industry, the most important thing is the sustainable power supply. This paper describes the development and performance test results of a compact electromagnetic energy harvesting mechanism for batteryless wireless switch. This paper summarizes proposed structure design and magnetic field analysis results of the mechanism to generate an induced electromotive force using 2mm stroke of a single push action. This analysis results show the power output of the proposed mechanism up to VDC $4.5V{\pm}25%$ and it can hold up to 65ms of the power generation with greater than 2.5V.

Piezoelectric Nanogenerators: Energy Harvesting Technology (압전 나노발전기: 에너지 수확 기술)

  • Shin, Dong-Myeong;Hwang, Yoon-Hwae
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Development of Piezoelectric Energy Harvesting Device and Experiments (압전체를 이용한 에너지 수집 장치 개발 및 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Kang, Ho-Yong;Kim, Nae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.81-89
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF