• Title/Summary/Keyword: Energy Equation

Search Result 2,857, Processing Time 0.026 seconds

The Drift Velocity of Electrons in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전자이동속도)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.105-109
    • /
    • 2011
  • Drift Velocity of Electrons in pure $CF_4$, $CH_4$ and mixtures of $CF_4$ and Ar. Have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.

ASYMPTIOTIC BEHAVIOR FOR THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH AN INTERNAL TIME-VARYING DELAY TERM

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.399-412
    • /
    • 2016
  • In this paper, we study the viscoelastic Kirchhoff type equation with the following nonlinear source and time-varying delay $$u_{tt}-M(x,t,{\parallel}{\nabla}u(t){\parallel}^2){\Delta}u+{\int_{0}^{t}}h(t-{\tau})div[a(x){\nabla}u({\tau})]d{\tau}\\+{\parallel}u{\parallel}^{\gamma}u+{\mu}_1u_t(x,t)+{\mu}_2u_t(x,t-s(t))=0.$$ Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the uniform decay rate of the Kirchhoff type energy.

ON THE MINIMAL ENERGY SOLUTION IN A QUASILINEAR ELLIPTIC EQUATION

  • Park, Sang-Don;Kang, Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • In this paper we seek a positive, radially symmetric and energy minimizing solution of an m-Laplacian equation, -div$($\mid${\nabla}u$\mid$^{m-2}$\mid${\nabla}u)\;=\;h(u)$. In the variational sense, the solutions are the critical points of the associated functional called the energy, $J(v)\;=\;\frac{1}{m}\;\int_{R^N}\;$\mid${\nabla}v$\mid$^m\;-\;\int_{R^N}\;H(v)dx,\;where\;H(v)\;=\;{\int_0}^v\;h(t)dt$. A positive, radially symmetric critical point of J can be obtained by solving the constrained minimization problem; minimize{$\int_{R^N}$\mid${\nabla}u$\mid$^mdx$\mid$\;\int_{R^N}\;H(u)d;=\;1$}. Moreover, the solution minimizes J(v).

EXPONENTIAL STABILITY FOR THE GENERALIZED KIRCHHOFF TYPE EQUATION IN THE PRESENCE OF PAST AND FINITE HISTORY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.659-675
    • /
    • 2016
  • In this paper, we study the generalized Kirchhoff type equation in the presence of past and finite history $$\large u_{tt}-M(x,t,{\tau},\;{\parallel}{\nabla}u(t){\parallel}^2){\Delta}u+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^t}\;h(t-{\tau})div[a(x){\nabla}u({\tau})]d{\tau}\\\hspace{25}-{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{-{\infty}}}^t}\;k(t-{\tau}){\Delta}u(x,t)d{\tau}+{\mid}u{\mid}^{\gamma}u+{\mu}_1u_t(x,t)+{\mu}_2u_t(x,t-s(t))=0.$$ Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the expoential decay rate of the Kirchhoff type energy.

Study on the Correction of Error Involved in Activation Energies Calculated by the Initial Rise Method (초기상승법에 의해 계산된 활성화 에너지의 오차보정에 관한 연구)

  • 류강식;추영배;류부형;김봉협
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.193-200
    • /
    • 1989
  • The errors of activation energy calculated by the initial rise method from the characteristics of thermally stimulated current have been estimated and an equation for the correction of the error is proposed. The coefficients needed in the proposed equation are determined by the numerical method. It is shown that the activation energy calculated by the conventional initial rise method contains errors of 0.7-10% depending on the location of the data points of the interval on which the method is applied. However, the error can be reduced to less than 0.5% when corrected by using the proposed equation. It is finally concluded that the activation energy determined by the initial rise method can approach the true value by adapting the proposed error correction method which is effective and reliable.

  • PDF

A Simulation of the Mean energy of electrons in $SF_6$-Ar Mixtures Gas (시뮬레이션을 이용한 $SF_6$-Ar혼합기체의 전자 평균에너지)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.578-580
    • /
    • 2005
  • Energy distribution function for electrons in SF6-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by TOF method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State (3차 상태방정식을 이용한 수소 충전 온도 거동 모사)

  • PARK, BYUNG HEUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.

Ionization and Attachment Coefficients in CF4 (CF4 기체에서의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.27-31
    • /
    • 2011
  • In this paper, the electron transport characteristics in $CF_4$ has been analysed over the E/N range 1~300[Td] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal diffusion coefficient, the ratio of the diffusion coefficient to the mobility, electron ionization and attachment coefficients, effective ionization coefficient, mean energy, collision frequency and the electron energy distribution function. The electron energy distribution function has been analysed in $CF_4$ at E/N=5, 10, 100, 200 and 300[Td] for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Boltzmann equation and Monte Carlo simulation have been compared with experimental data by Y. Nakamura and M. Hayashi. The swarm parameter from the swarm study are expected to serve as a critical test of current theories of low energy electron scattering by atoms and molecules, in particular, as well as crucial information for quantitative simulations of weakly ionized plasmas.

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

Thermal Flux Analysis for the Wearable NOx Gas Sensors (웨어러블 NOx 가스센서의 열유동 해석)

  • Jang, Kyung-uk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.793-799
    • /
    • 2019
  • In this study, the diffusion process and the thermal energy distribution gradient of the sensor were confirmed by using the finite element analysis program (COMSOL) of the mesh method to analyze the thermal diffusion in the wearable fabric (Nylon) + MWCNT gas sensor. To analyze the diffusion process of thermal energy, the structure of the gas sensor was modeled in a two dimension plane. The proposed modeling was presented with the characteristic value for the component of the sensor, and the gas sensor designed using the mesh finite element method (FEM) was proposed and analyzed by suggesting the one-way partial differential equation in the governing equation to know the degree of thermal energy diffusion and the thermal energy gradient. In addition, the temperature gradient 10[K/mm] of the anode-cathode electrode layer and the gas detection unit was investigated by suggesting the heat velocity transfer equation.