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EXPONENTIAL STABILITY FOR THE GENERALIZED

KIRCHHOFF TYPE EQUATION IN THE PRESENCE OF

PAST AND FINITE HISTORY

Daewook Kim

Abstract. In this paper, we study the generalized Kirchhoff type equa-

tion in the presence of past and finite history

utt −M(x, t, τ, ‖∇u(t)‖2)∆u+

∫ t

0
h(t− τ)div[a(x)∇u(τ)]dτ

−
∫ t

−∞
k(t− τ)∆u(x, t)dτ + |u|γu+ µ1ut(x, t) + µ2ut(x, t− s(t)) = 0.

Under the smallness condition with respect to Kirchhoff coefficient and
the relaxation function and other assumptions, we prove the expoential

decay rate of the Kirchhoff type energy.

1. Introduction

In the present work, we are concerned with the following problem:

utt(x, t)−M(x, t, τ, ‖∇u(t)‖2)∆u(x, t)

+

∫ t

0

h(t− τ)div[a(x)∇u(τ)]dτ −
∫ t

−∞
k(t− τ)∆u(x, t)dτ (1)

+|u|γu+ µ1ut(x, t) + µ2ut(x, t− s(t)) = 0 in Ω× R+,

ut(x, t) = z0(x, t) in Ω× [−s(0), 0), (2)

u(x, t) = 0 on Γ× R+, (3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (4)

where Ω be a bounded open set of RN (N ≥ 1) with a smooth boundary Γ, γ > 0,
and other conditions such as M,h, a, k be in next section. Moreover, µ1 and
µ2 are real numbers in that µ1 is only a positive constant, s > 0 represents the
time-varying delay. In fact, u0, u1 z0 are initially given functions belonging to
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suitable space and u(x, t) is the transversal displacement of the strip at spatial
coordinate x and time t in the real world application.

On the system in the mechanical applications, we consider two different delay
types, that is, the pure internal time-varying type and types in the Voltterra
(viscoelastic form with some kernel) term. In [1], they dealt with Kirchhoff type
system in the first case. But, in fact, it is possible to be appear the viscoelastic
Kirchhoff form getting tangled with (finite or not) time delay under the real
world system. So, we are involved in the system with generalized Kirchhoff
term M(x, t, τ, ‖∇u(t)‖2) in the last case, especially.

The main purpose of this work is to study of the asymptotic stability of
problem (1)-(4) considering the Volterra likes Kirchhoff type with not only finite
but also infinite (past) history time delay in the last case.

Time delays so often arise in many physical chemical, biological, thermal
and economical phenomena. In recent years, the control of PDEs with time
delay effects has become an active area of research, see for instance [2, 3] and
the references therein. The presence of delay may be a source of stability. An
arbitrarily small delay may destrabilize a system which is preventing like stick-
slip in the mass production process for mechanical engineering.

This problem has its origin in the mathematical description of system in real
world from the mathematical modeling for axially moving viscoelastic materi-
als. It is well known that viscoelastic materials exhibit natural damping, which
is due to the special property of these materials to retain a memory of their
past history. From the mathematical point of view, these damping effects are
modeled by integro-differential operators. Furthermore, sourcing effects of sta-
bility are influenced by some time-varying delay. For these reasons, there are
not exist weak or strong damping term in our problem (1)-(4). Our purpose
is focused on not only memory effects but also time-varying delay which are
involved in not only internal time-varying delay term but also Kirchhoff and
Volterra term considering time delay for the problem otherwise the previous
result [1, 4]. Recently, problems with Timoshenko or basic hyperbolic type
for viscoelastic materials have been considered by many authors (See [5, 6]).
Besides, many engineering devices involve the transverse vibration of axially
moving strings. Axially moving string is a typical model that is widely used,
especially when the subject is long and narrow enough and has a negligible flex-
ural rigidity, to represent threads, wires, magnetic tapes, belts, band saws, and
cables. Various mathematical models and simulations have been established
for a better understanding with linear or nonlinear dynamic behavior of these
moving continua [7, 8, 9, 10, 11, 12, 13]. The mathematical model for axially
moving strings was first introduced by Kirchhoff [14] (and see Carrier [7]), and
the original equation is given in the form of

ρh
∂2u

∂t2
=
(
p0 +

Eh

2L

∫ L

0

(∂u
∂x

)2

dx
)∂2u

∂x2
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for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the
space coordinate x and time t; E, the young’s modulus; ρ, the mass density; h,
the cross section area; L, the length; and p0, the initial axial tension. Recently,
problems with the extended Kirchhoff type equation which is concerning axially
moving heterogeneous or non heterogeneous materials (nonlinear vibrations of
beams, strings, plates, and membranes) have been considered by many authors
(See [15, 16, 17]).

In this paper, we will mainly concern on an aspect of decay rate of the
generalized Kirchhoff type energy of the viscoelastic system in the presence of
past and finite history. We get its proof by using the smallness condition func-
tions with respect to generalized Kirchhoff coefficient, the relaxation function
and internal time-varying delay. In fact, the difference of the energy consist in
Kirchhoff type potential energy and finite and infinite delay.

This paper organized as follows. In Section 2, we will present some notations,
material needed (assumptions, lemmas and so on) for our work and state a global
existence and energy decay rate theorem (main result). Section 3 contains the
proof of our main result.

2. Preliminaries and main results

We first introduce the elementary bracket pairing in Ω ⊂ RN

〈ϕ,ψ〉 ≡
∫

Ω

(ϕ,ψ)dx,

provided that (ϕ,ψ) ∈ L1(Ω). And we set the norms as follows.

‖u‖Lp(Ω) =

(∫
Ω

|u|pdx
) 1

p

.

To simplify the notations, we denote ‖u‖L2(Ω), ‖u‖L1(0,+∞), ‖v‖L∞(0,+∞) by
‖u‖, ‖v‖L1 , ‖v‖L∞ respectively.

And also, the Kirchhoff type memory component coefficientM(x, t, τ, ‖∇u(t)‖2)
in (1) define by M(x, t, ‖∇u(t)‖2)−

∫∞
0
k(τ)dτ .

For the Kirchhoff type memory component, we assume that

k ∈ C1((0,∞)) ∩ L1(0,∞),

∫ ∞
0

k(s)ds = k0 > 0, (5)

k(s) ≥ 0, kt(s) ≤ 0, ∀s ∈ (0,∞), (6)

and that there exists a constant k1 > 0 such that

kt(s) + k1µ(s) ≤ 0, ∀s ∈ (0,∞). (7)

In the following, we fix some notation on the function space that will be used.

V0 = L2(Ω), V1 = H1
0 (Ω), V2 = H2(Ω) ∩H1

0 (Ω)

Actually, we can define the inner product and norm of V2 as follows:

〈u, v〉V1 = 〈∇u,∇v〉 and ‖u‖V1 = ‖∇u‖22.



662 D. KIM

In the sequel we state the general hypotheses.

(A1) h : R+ → R+ is a bounded C1 function satisfying h(0) > 0, and there
exists positive constant t0, ζ1, ζ2, ζ3 such that

−ζ1 ≤ h′(t) ≤ −ζ2h(t), ∀t > t0,

0 ≤ h′′(t) ≤ ζ3h(t), ∀t > t0.

(A2) a : Ω→ R+ is a nonnegative bounded function and a(x) ≥ a0 > 0 on Ω
with

m0

a0
≥ 1− ‖a‖∞

∫ ∞
0

h(s)ds = l > 0,

where m0 is in (B2). And also, the following smallness condition satisfy

ε7 < a2
0

∫ t

0

h(s)ds.

(A3) γ satisfies

0 ≤ γ ≤ 2

n− 2
, n ≥ 3,

γ ≥ 0, n = 1, 2.

(A4) The initial data satisfy

u0 ∈ H1
0 (Ω) ∩H2(Ω), u1 ∈ H1

0 (Ω).

(B1) M(x, t, λ) is a real-valued function of class C2 on x ∈ Ω, t ≥ 0, λ ≤ 0.
(B2) 0 < m0 ≤M(x, t, λ) ≤ C0f(λ) with M(x, t, λ) = M1(x, t) +M2(x, t, λ).

And also, the following smallness condition satisfy

f(λ) <

√
a0h(t)

2 − CpC̃1 + ε2
(
m0 − 1

2

)
ε3ε8

.

(B3) ∂M1

∂t ≤ 0,
∣∣∂M2

∂t

∣∣ ≤ C1g1(λ),
∣∣∂M
∂λ

∣∣ ≤ C2g2(λ), 0 < m1 ≤Mx(x, t, λ).

(B4) f, g1, g2 ∈ C1([0,+∞);R+) are strictly increasing.
Furthermore, Ci (i = 0, 1, 2) is a positive constant.

(C1) There exists a non-increasing differential function ζ : R+ → R+ satisfy-
ing

ζ(t) > 0, h′(t) ≤ −ζ(t)h(t) = 0, ∀t > 0.

In order to consider the relative displacement η as a new variable, we intro-
duce the weighted L2-space.

Si = L2
k((0,∞);Vi) =

{
η : (0,∞)→ Vi

∣∣∣∣ ∫ ∞
0

k(s)‖η(s)‖2Vi
ds <∞

}
, i = 0, 1

which are non-empty due to assumptions (4) and (6). In addition, they are
Hilbert space endowed with inner products and norms

〈ξ, ζ〉k,i =

∫ ∞
0

k(s)〈ξ(s), ζ(s)〉Vids,
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‖ξ‖2k,i =

∫ ∞
0

k(s)‖ξ(s)‖2Vi
ds, i = 0, 1.

Then we can define our phase spaces

F = V1 × V0 × S1

equipped with the norms

‖〈u, v, ξ〉‖2F = ‖∇u‖22 + ‖v‖22 + ‖ξ‖2k,1.
First the framework proposed in Giorgi et al. and Pata and Zucchi, which uses
in argument of Dafermos [18], we shall give a new variable η to the system which
corresponds to the relative displacement history. Let us define

ηt(x, τ) = u(x, t)− u(x, t− τ), (x, t, τ) ∈ Ω× (0,∞)× (0,∞). (8)

By differentiation, we have

ηtt(x, τ) = ηtτ (x, τ) + ut(x, t), (x, t, τ) ∈ Ω× (0,∞)× (0,∞). (9)

and

η0(x, τ) = u0(x, 0) + u0(x,−τ), (x, τ) ∈ Ω× (0,∞). (10)

Thus, the memory term can be rewritten as∫ t

−∞
k(t− τ)∆u(x, τ)dτ =

∫ ∞
0

k(τ)∆u(x, t− τ)dτ

=

(∫ ∞
0

k(τ)dτ

)
∆u(x, t)−

∫ ∞
0

k(τ)∆ηt(x, τ)dτ.

and the first equation of the problem (1) becomes

utt(x, t)+M(x, t, ‖∇u(t)‖2)∆u(x, t) +

∫ t

0

h(t− τ)div[a(x)∇u(τ)]dτ + |u|γu

+

∫ ∞
0

k(τ)∆ηt(x, τ)dτ + µ1ut(x, t) + µ2ut(x, t− s(t)) = 0.(11)

For the time-varying delay, we assume as in [2] that there exist positive
constants s0, s such that

0 < s0 ≤ s(t) ≤ s, ∀t > 0. (12)

Moreover, we assume that the speed of the delay satisfies

s′(t) ≤ d < 1, ∀t > 0, (13)

which is

s ∈W 2,∞([0, T ]), ∀t > 0

and that µ1, µ2 satisfy

|µ2| <
√

1− dµ1. (14)

As in [2], let us introduce the function

z(x, %, t) = ut(x, t− s(t)%), x ∈ Ω, % ∈ (0, 1), t > 0.
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Then, the problem (1)-(4) is equivalent to

utt(x, t)−M(x, t, ‖∇u(t)‖2)∆u(x, t)

+

∫ t

0

h(t− τ)div[a(x)∇u(τ)]dτ +

∫ ∞
0

k(τ)∆ηt(x, τ)dτ (15)

+|u|γu+ µ1ut(x, t) + µ2z(x, 1, t) = 0 in Ω× (0,+∞),

s(t)zt(x, %, t) + (1− s′(t)%)z%(x, %, t) in Ω× (0, 1)× (0,+∞), (16)

ut(x, t) = z(x, 0, t) on Ω× (0,+∞), (17)

z(x, %, 0) = z0(x,−%s(0)) in Ω× (0, 1), (18)

u(x, t) = ηt(x, τ) = 0 on Γ× [0,+∞)× (0,+∞), (19)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (20)

In the following, we give a lemma which will be useful in this paper.

Lemma 2.1. Denote (h � u)(t) =
∫ t

0
h(t − τ)‖

√
a(x)(u(t) − u(τ))‖2dτ . Then

we have∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ =− 1

2

d

dt
[(h � u)(t)] +

1

2
(h′ � u)(t)

+
1

2

d

dt

[
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds

]
− 1

2
h(t)‖

√
a(x)∇u(t)‖2.

(21)

Proof. A direct computation shows that∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ =

∫ t

0

h(t− τ)〈a(x)∇u(τ)− a(x)∇u(t),∇u′(t)〉dτ

+

∫ t

0

h(t− τ)〈a(x)∇u(t),∇u′(t)〉dτ

=− 1

2

∫ t

0

h(t− τ)

[
d

dt
‖
√
a(x)(∇u(τ)−∇u(t))‖2

]
dτ

+
1

2

∫ t

0

h(t− τ)

[
d

dt
‖
√
a(x)∇u(t)‖2

]
dτ

=− 1

2

d

dt

[∫ t

0

h(t− τ)‖
√
a(x)(∇u(τ)−∇u(t))‖2dτ

]
+

1

2

∫ t

0

h′(t− τ)‖
√
a(x)(∇u(τ)−∇u(t))‖2dτ

+
1

2

d

dt

∫ t

0

h(t− τ)‖
√
a(x)∇u(t)‖2dτ

− 1

2
h(t)‖

√
a(x)∇u(t)‖2.

�
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Lemma 2.2.

〈∂τηt, ηt〉k,1 ≥
k1

2
‖ηt‖2k,1. (22)

Proof. From assumptions (5)-(7) and noting that ηt(0) = 0, we deduce

〈∂τηt, ηt〉k,1 =

∫ ∞
0

k(τ)∂τ (∇ηt(τ)),∇ηt(τ))dτ

=
1

2

∫ ∞
0

∂τ (k(τ)‖∇ηt(τ)‖2)dτ − 1

2

∫ ∞
0

k′(τ)‖∇ηt(τ)‖2dτ

≥ k1

2

∫ ∞
0

k(τ)‖∇ηt(τ)‖2dτ,

and therefore

〈∂sηt, ηt〉k,1 ≥
k1

2
‖ηt‖2k,1.

�

Then, we can state our result as follows.

Theorem 2.3. Let the assumptions (A1), (A4), (B1)-(B4) and (C1) hold. Then,
given (u0, u1, η0) ∈ F, z0 ∈ L2(Ω)×(0, 1) and T > 0, there exist a weak solution
(u, u′, η, z) of the problem (15)-(20) on (0, T ) such that

u ∈ C([0, T ];V2) ∩ C1([0, T ];V0),

u′ ∈ L2(0, T ;V1),

z ∈ L2(Ω× (0, 1)),

η ∈ L2(0, T ;M2).

Proof. By using Galerkin’s approximation and a routine procedure similar to
that of cite [5, 16], we can the global existence result for the solution subject to
(1)-(4) under the assumptions (A1)-(A4), (B1)-(B4) and (C1). �

Theorem 2.4. Let u be the global solution of the problem (1)-(4) with the above
all conditions. We define the Kirchhoff type energy functional E(t) as

E(t) =
1

2

[
‖u′(t)‖2 +

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx+ ‖ηt‖2k,1
]

1

γ + 2
‖u′(t)‖γ+2

γ+2 +
ζ

2

∫ t

t−s(t)

∫
Ω

eη(τ−t)u2
t (τ)dxdτ,

where ζ, η are suitable positive constants.
Then the energy functional decays exponentially to zero as the time goes to
infinity, that is,

E(t) ≤ κe−ϑt, ∀t ≥ 0

where κ, ϑ are positive constants.
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3. Proof of Theorem 2.4 (Energy decay)

Proof. Multiplying u′ on both sides of Eq.(15), integrating the resulting equa-
tions over Ω, and using the Green formula and (19), we have

〈u′′(t), u′(t)〉+ 〈M(x, t, ‖∇u(t)‖2)∇u(t),∇u′(t)〉
+ 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ +

∫ ∞
0

k(τ)〈∆ηt(x, τ), u′(t)〉dτ

+ 〈|u|γu, u′〉+ 〈µ1ut(x, t) + µ2ut(x, t− s(t)), u′〉 = 0,

(23)

that is

d

dt
E(t) =

1

2

∫
Ω

∂

∂t
M1(x, t)|∇u(x, t)|2dx

+
1

2

∫
Ω

∂

∂t
M2(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

+

[∫
Ω

∂

∂λ
M2(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

]
〈∇u′(t),∇u(t)〉

− 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ − 〈∂τηt, ηt〉k,1

+
ζ

2

∫
Ω

u2
t (t)dx−

ζ

2

∫
Ω

e−ηs(t)u2
t (t− s(t))(t− s′(t))dx

− ηζ

2

∫ t

t−s(t)

∫
Ω

e−η(τ−t)u2
t (τ)dxdτ,

(24)

where

E(t) =
1

2

[
‖u′(t)‖2 +

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx+ ‖ηt‖2k,1
]

+
1

γ + 2
‖u′(t)‖γ+2

γ+2 +
ζ

2

∫ t

t−s(t)

∫
Ω

eη(s−τ)u2
t (τ)dxdτ.
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From (B3) and Hölder inequality, and (12), (13) and some mainipulations as in
[2], we obtain

E′(t) ≤ ‖u(t)‖2
{
C1

2
g1(‖∇u(t)‖2) + C2g2(‖∇u(t)‖2)‖∇u′(t)‖‖u(t)‖

}
− 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ − 〈∂τηt, ηt〉k,1

−
(
µ1 −

|µ2|
2
√

1− d
− ζ

2

)∫
Ω

u2
t (t)dx

−
(
e−ηs

ζ(1− d)

2
− |µ2|

√
1− d

2

)∫
Ω

u2
t (t− s(t))dx

− ηζ

2

∫ t

t−s(t)

∫
Ω

e−η(τ−t)u2
t (τ)dxdτ.

(25)

By (B3), (21) and Young’s inequality, we have

E′(t) ≤‖u(t)‖2C̃1 + ε1m1‖∇u(t)‖2 +
m1

4ε1
‖u′(t)‖2

− 1

2

d

dt
[(h � u)(t)] +

1

2
(h′ � ∇u)(t)

+
1

2

d

dt

[
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds

]
− 1

2
h(t)‖

√
a(x)∇u(t)‖2 − 〈∂τηt, ηt〉k,1

−
(
µ1 −

|µ2|
2
√

1− d
− ζ

2

)∫
Ω

u2
t (t)dx

−
(
e−ηs

ζ(1− d)

2
− |µ2|

√
1− d

2

)∫
Ω

u2
t (t− s(t))dx

− ηζ

2

∫ t

t−s(t)

∫
Ω

e−η(τ−t)u2
t (τ)dxdτ,

(26)

where

C̃1 =
C1

2
g1(‖∇u(t)‖2) + C2g2(‖∇u(t)‖2)‖∇u′(t)‖‖u(t)‖(27)

is a positive constant. And ε1 is also a positive constant.
Define the new energy functional E1(t) as follows

E1(t) = E(t) +
1

2
(h � ∇u)(t)− 1

2
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds. (28)

For positive constants ε2 and ε3, let us define the perturbed modified energy by

F (t) = E1(t) + ε2ϕ(t) + ε3ψ(t), (29)



668 D. KIM

where

ϕ(t) = 〈u′(t), u(t)〉. (30)

and

ψ(t) = −
∫ t

0

h(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ. (31)

By using the Cauchy’s inequality, Hölder inequality and Poincarè inequality,
there exist positive constants α1, α2 such that for each t > 0

α1F (t) ≤ E1(t) ≤ α2F (t). (32)

Proposition 3.1. (Energy equivalence)

α1F (t) ≤ E1(t) ≤ α2F (t) for all t ≥ 0,

where α1 and α2 are positive constants.

Proof. Now, we will fix ζ in the energy E(t) such that

2µ1 −
|µ2|√
1− d

− ζ > 0, (33)

ζ − |µ2|√
1− d

> 0 (34)

and

η <
1

s

∣∣∣∣log
|µ2|

ζ
√

1− d

∣∣∣∣ . (35)

Then, similar as Proposition 3.1. in [4], we can choose two constants α1 and
α2. In fact, the existence of such a constant η is guaranteed by the assumption
(14). �

Then from (A1) and (26), and (28) and (33)-(35), we have

E′1(t) ≤‖u(t)‖2C̃1 + ε1m1‖∇u(t)‖2 +
m1

4ε1
‖u′(t)‖2

− 〈∂τηt, ηt〉k,1 −
ζ2
2

(h � ∇u)(t)

− 1

2
a0h(t)‖∇u(t)‖2 − C2

∫
Ω

[u2
t (t) + u2

t (t− s(t))]dx

− ηζ

2

∫ t

t−s(t)

∫
Ω

e−η(τ−t)u2
t (τ)dxdτ

≤‖u(t)‖2C̃1 + ε1m1‖∇u(t)‖2 +
m1

4ε1
‖u′(t)‖2 − 〈∂τηt, ηt〉k,1

− ζ2
2

(h � ∇u)(t)− 1

2
a0h(t)‖∇u(t)‖2 − C2

∫
Ω

u2
t (t− s(t))dx,

(36)
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where, C2 is some positive constant. And also, by (A2), the energy E1(t) is a
positive functional. Applying Poincarè inequality to (36) and Lemma 2.2 , we
deduce

E′1(t) ≤
(
CpC̃1 + ε1m1 −

1

2
a0h(t)

)
‖∇u(t)‖2 − k1

2
‖ηt‖2k,1

+
m1

4ε1
‖u′(t)‖2 − ζ2

2
(h � ∇u)(t)− C2

∫
Ω

u2
t (t− s(t))dx,

(37)

where Cp is the Poincarè coefficient. Meanwhile, we note from (A1) and (A2)
that

E1(t) ≥1

2
‖u′(t)‖2 +

1

2

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

+
1

2

(
1− ‖a‖∞

∫ t

0

h(s)ds

)
‖∇u(t)‖2 +

1

2
‖ηt‖2k,1 +

1

2
(h � u)(t)

+
1

γ + 2
‖u(t)‖γ+2

γ+2 +
ζ

2

∫ t

t−s(t)

∫
Ω

eη(τ−t)u2
t (τ)dxdτ

≥l
[1

2
‖u′(t)‖2 +

1

2

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx+ ‖ηt‖2k,1

+
1

γ + 2
‖u(t)‖γ+2

γ+2 +
ζ

2

∫ t

t−s(t)

∫
Ω

eη(τ−t)u2
t (τ)dxdτ

]
.

(38)

So, we deduce the relation 0 ≤ E(t) ≤ l−1E1(t). Therefore, the uniform decay
of E(t) is a result of the decay of E1(t).

In fact, using (1), we have

ϕ′(t) =〈u′′(t), u(t)〉+ ‖u′(t)‖2.

=‖u′(t)‖2 +
〈
u(t),M(x, t, ‖∇u(t)‖2)∆u(x, t)

−
∫ t

0

h(t− τ)div[a(x)∇u(τ)]dτ − |u(t)|γu(t)

− |u(t)|γu(t)− µ1ut(x, t)− µ2ut(x, t− s(t))
〉

=‖u′(t)‖2 −
∫

Ω

M(x, t, ‖∇u(t)‖2)|∇u(t)|2dx

+

∫ t

0

h(t− τ) 〈a(x)∇u(τ),∇u(t)〉]dτ −
∫ ∞

0

k(τ)∇ηt(τ)∇u(t)dτ

− |u(t)|γu(t)− µ1

∫
Ω

u(t)ut(t)dx− µ2

∫
Ω

u(t)ut(t− s(t))dx.

(39)
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By Cauchy inequality and Young’s inequality, we have∣∣∣∣∫ t

0

h(t− τ) 〈a(x)∇u(τ),∇u(t)〉]dτ
∣∣∣∣

≤1

2
‖∇u(t)‖2 +

1

2

∥∥∥∥∫ t

0

h(t− τ)(a(x)|∇u(τ)−∇u(t)|+ a(x)|∇u(t)|)dτ
∥∥∥∥2

≤1

2
‖∇u(t)‖2 +

(
1

2
+

1

8ε6

)∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(τ)−∇u(t)|dτ
∥∥∥∥2

+

(
1

2
+
ε6
2

)∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(t)|dτ
∥∥∥∥2

,

(40)

where ε6 with respect to Young’s inequality is a positive constant. Using the
assumption (A2) and (40), we get∣∣∣∣∫ t

0

h(t− τ) 〈a(x)∇u(τ),∇u(t)〉]dτ
∣∣∣∣

≤
(

1

2
+

1

8ε6

)
‖a‖∞

∫ t

0

h(s)ds

∫ t

0

h(t− τ)
∥∥∥√a(x)(∇u(τ)−∇u(t))

∥∥∥2

dτ

+

(
1

2
+
ε6
2

)
‖∇u(t)‖2

(
‖a‖∞

∫ t

0

h(s)a(x)ds

)2

+
1

2
‖∇u(t)‖2

≤1

2
(1 + (1 + ε6)(1− l)2)‖∇u(t)‖2 +

(4ε6 + 1)(1− l)
8ε6

(h � ∇u)(t).

(41)

Now, we estimate the fourth term on the right-hand side of (39) by employing
Young’s, Cauchy-Schwarz, and Poincare’s inequalities, so we obtain for any
ς > 0,

I4 ≤
∣∣∣∣−∫ ∞

0

k(τ)∇ηt(τ)∇u(t)dτ

∣∣∣∣
≤
∫ ∞

0

k(τ)

(
1

4ς
‖∇ηt(τ)‖2 + ς‖∇u(t)‖2

)
dτ

≤ ς
(∫ ∞

0

k(τ)ds

)
‖∇u(t)‖2 +

1

4ς

∫ ∞
0

k(τ)‖∇ηt(τ)‖2dτ(42)

≤ ςk0‖∇u(t)‖2 +
1

4ς
‖ηt‖2k,1,

Also, using Young’s and Poincaré’s inequalities gives

−µ1

∫
Ω

u(t)ut(t)dx ≤ ε
∫

Ω

|∇u|2dx+ C(ε)

∫
Ω

u2
t (t)dx (43)

−µ2

∫
Ω

u(t)ut(t− s(t))dx ≤ ε
∫

Ω

|∇u|2dx+ C(ε)

∫
Ω

u2
t (t− s(t))dx (44)
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By combining (39) and (41)-(44), we conclude

ϕ′(t) ≤(1 + C(ε))‖u′(t)‖2 +
1

2
(1− 2m0 + (1 + ε6)(1− l)2 + 2ε+ 2ςk0)‖∇u(t)‖2

+
(4ε6 + 1)(1− l)

8ε6
(h � ∇u)(t) +

1

4ς
‖ηt‖2k,1 − ‖u(t)‖γ+2

γ+2

+ C(ε)

∫
Ω

u2
t (t− s(t))dx.

(45)

Next, we estimate ψ′(t) as follows. In fact, using (1), we have

ψ′(t) =−
∫ t

0

h′(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ.

−
∫ t

0

h(t− τ)〈a(x)u′′(t), u(t)− u(τ)〉dτ − ‖
√
a(x)u′(t)‖2

∫ t

0

h(s)ds

=−
∫ t

0

h′(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ.

−
∫ t

0

h(t− τ)〈M(x, t, ‖∇u(t)‖2)a(x)∇u(t),∇u(t)−∇u(τ)〉dτ

−
〈∫ t

0

h(t− τ)a(x)∇u(τ)dτ,

∫ t

0

h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉
−
〈∫ ∞

0

k(τ)∇ηt(x, τ)dτ,

∫ t

0

h(t− τ)ax(x)(u(t)− u(τ))dτ

〉
−
〈∫ ∞

0

k(τ)∇ηt(x, τ)dτ,

∫ t

0

h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉
+

∫ t

0

h(t− τ)〈a(x)|u|γu, u(t)− u(τ)〉dτ

− ‖
√
a(x)u′(t)‖2

∫ t

0

h(s)ds

+

∫
Ω

(∫ t

0

h(t− τ)a(x)(u(t)− u(τ))ds

)
[µ1ut(t) + µ2ut(t− s(t))]dx.

(46)

Using Cauchy inequality, Poincarè inequality and (A1), we have∣∣∣∣−∫ t

0

h′(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ
∣∣∣∣

≤ε7‖∇u(t)‖2 +
ζ1
4ε7

∥∥∥∥∫ t

0

h(t− τ)a(x)|u(t)− u(τ)|dτ
∥∥∥∥2

≤ε7‖∇u(t)‖2 +
ζ1
4ε7

(1− l)C2
p(h � ∇u)(t),

(47)
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where ε7 is a positive constant with respect to Cauchy inequality and Cp is the
Poincarè coefficient. Similarly, using Cauchy inequality and (B2), we get∣∣∣∣−∫ t

0

h(t− τ)〈M(x, t, ‖∇u(t)‖2)a(x)∇u(t),∇u(t)−∇u(τ)〉dτ
∣∣∣∣

≤ε8f2(‖∇u(t)‖2)‖u′(t)‖2 +
C0(1− l)

4ε8
(h � ∇u)(t)

(48)

and

∣∣∣∣−〈∫ t

0

h(t− τ)a(x)∇u(τ)dτ,

∫ t

0

h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉∣∣∣∣
≤ε9

∥∥∥∥∫ t

0

h(t− τ)(a(x)|∇u(t)−∇u(τ)|+ a(x)|∇u(t)|)dτ
∥∥∥∥2

+
1

4ε9

(
‖a‖∞

∫ t

0

h(s)ds

)∫ t

0

h(t− τ)‖
√
a(x)(∇u(t)−∇u(τ))‖2dτ

≤2ε9

(∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(t)−∇u(τ)|dτ
∥∥∥∥2

+

∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(t)|dτ
∥∥∥∥2
)

+
1− l
4ε9

(h � ∇u)(t)

≤
(

2ε9 +
1

4ε9

)
(1− l)(h � ∇u)(t) + 2ε9(1− l)2‖∇u(t)‖2,

(49)

where ε8, ε9 are positive constants with respect to Cauchy inequality.
For the term with respect to η, using Cauchy inequality and routine calcula-

tions, we get∣∣∣∣−〈∫ ∞
0

k(τ)∇ηt(x, τ)dτ,

∫ t

0

h(t− τ)ax(x)(u(t)− u(τ))dτ

〉∣∣∣∣
≤ k0

εη1
‖ηt‖2k,1 + εη1C

2
p(1− l)(h � ∇u)(t)

(50)

and ∣∣∣∣−〈∫ ∞
0

k(τ)∇ηt(x, τ)dτ,

∫ t

0

h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉∣∣∣∣
≤ k0

εη2
‖ηt‖2k,1 + εη2(1− l)(h � ∇u)(t)

(51)

where εη1 , εη2 are positive constants with respect to Cauchy inequality and Cp
is the Poincarè coefficient.
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And also, using Cauchy inequality and Poincarè inequality, we have∣∣∣∣∫ t

0

h(t− τ)〈a(x)|u(t)|γu, u(t)− u(τ)〉dτ
∣∣∣∣

≤ε10‖u(t)‖2(γ+1)
2(γ+1) +

Cp(1− l)
4ε10

(h � ∇u)(t),

(52)

where ε10 is a positive constant with respect to Cauchy inequality and Cp is the

Poincarè coefficient. Noting H1(Ω) ↪→ L2(γ+1)(Ω) and using Poincarè inequal-
ity, (28), (36) and (52), we get∣∣∣∣∫ t

0

h(t− τ)〈a(x)|u(t)|γu, u(t)− u(τ)〉dτ
∣∣∣∣

≤ε10C
2(γ+1)
p

(
2E1(0)

l

)γ
‖∇u(t)‖2 +

Cp(1− l)
4ε10

(h � ∇u)(t),

(53)

where Cp is the Poincarè coefficient. And also, we get∣∣∣∣∫
Ω

(∫ t

0

h(t− τ)a(x)(u(t)− u(τ))ds

)
[µ1ut(t) + µ2ut(t− s(t))]dx

∣∣∣∣
≤ε10

∫
Ω

[u2
t (t) + u2

t (t− s(t))]dx+
Cp(1− l)

4ε10
(h � ∇u)(t),

(54)

Combining (41)-(51) and (53)-(54) and also using (A2), we deduce

ψ′(t) ≤
(
ε7 − a2

0

∫ t

0

h(s)ds+ ε10

)
‖u′(t)‖2

+

(
ε8f

2(‖∇u(t)‖2) + 2ε9(1− l)2 + ε10C
2(γ+1)
p

(
2E1(0)

l

)γ)
‖∇u(t)‖2

+

((
ζ1
4ε7

+ εη2

)
C2
p +

C0

4ε8
+ 2ε9 +

1

4ε9
+

Cp
4ε10

+ εη1

)
(1− l)(h � ∇u)(t)

+ k0

(
1

εη1
+

1

εη2

)
‖ηt‖2k,1 + ε10

∫
Ω

u2
t (t− s(t))dx.

(55)

Combining (37), (29), (45) and (55), we deduce

F ′(t) = E′1(t) + ε2ϕ
′(t) + ε3ψ

′(t)

≤w1‖u′(t)‖2 + w2

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx+ w3(h � ∇u(t))

− ‖u(t)‖γ+2
γ+2 + w4

∫
Ω

u2
t (t− s(t))dx+ w5‖ηt‖2k,1,

(56)

where

w1 =
m1

4ε1
+ (1 + C(ε))ε2 + ε3

(
ε7 − a2

0

∫ t

0

h(s)ds+ ε10

)
,
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w2 =f(‖∇u(t)‖2)C0

[
CpC̃1 + ε1m1 −

1

2
a0h(t) + 2ε2ςk0

]
+
ε2f(‖∇u(t)‖2)C0

2
(1− 2m0 + (1 + ε6)(1− l)2 + 2ε)

+ ε3f(‖∇u(t)‖2)C0

(
ε8f

2(‖∇u(t)‖2) + 2ε9(1− l)2 + ε10C
2(γ+1)
p

(
2E1(0)

l

)γ)
,

w3 =− ζ2
2

+ ε3(εη2C
2
p + εη1)

+

[
ε2(4ε6 + 1)

8ε6
+ ε3

(
ζ1
4ε7

C2
p +

C0

4ε8
+ 2ε9 +

1

4ε9
+

Cp
4ε10

)]
(1− l),

w4 = ε2C(ε) + ε3ε10 − C2,

w5 =
ε2
4ς

+ k0ε3

(
1

εη1
+

1

εη2

)
− k1

2
.

By using the smallness condition in (A2) and (B2), for the fixed εi, i = 1, 4, · · · , 10,
we choose εj > 0, j = 2, 3 and ε small enough such that wk < 0, k = 1, 2, 3, 4.
According to (28) and (56), there exist a positive constant s such that

F (t) ≤ −sE1(t) (57)

for all t which is larger than the fixed time T0. We conclude from (32) and (57)
that

F (t) ≤ −sα1F (t)

for all t which is larger than the fixed time T0. That is, for all t which is larger
than the fixed time T0,

F (t) ≤ F (T0)esα1T0e−sα1t. (58)

Therefore, we deduce from (32), (38) and (58) that there are positive constants
κ and ϑ such that

E(t) ≤ κ exp{−ϑt} for all t ≥ 0 and as t→ +∞.

�
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