• Title/Summary/Keyword: Energy Efficiency Improvement

Search Result 1,002, Processing Time 0.034 seconds

Evaluation of Economic-Environmental Impact of Heat Exchanger Network in Naphtha Cracking Center (납사분해 공정 내 열 교환 네트워크 경제적-환경영향 평가)

  • Hyojin Jung;Subin Jung;Yuchan Ahn
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.378-387
    • /
    • 2023
  • Petrochemical is an energy consuming industry that consumes about 30% of total industrial energy consumption and is a representative carbon dioxide (CO2) emission source. Among them, the Naphtha Cracking Center (NCC), which produces ethylene, propylene, propane and mixed C4, consumes large amounts of energy and emits significant amounts of CO2. For this reason, an integrated techno economic- environmental impact assessment aimed at reducing energy consumption and environmental impact factors is necessary to ensure efficiency in terms of economics and environment. This study aims to analyze the efficiency of the heat exchanger network used in the existing NCC base on the pinch analysis and select an improvement plan that can reduced energy consumption. In order to reduces the utility consumption in the process, an optimal heat exchanger network considering the high-temperature and low-temperature stream was derived, and the economic evaluation was conducted by considering the trade-off between the reduction in utility consumption and the increase in heat exchanger installation cost. In addition, an environmental impact assessment was conducted on the reduced CO2 emission in consideration of the environmental aspect, and the economic environmental impact assessment used the payback period to recover the invested funds to come up with an energy saving plan that can be applied based on the actual process. As a result of considering the economic-environmental impact assessment, when the environmental impact assessment was not considered, it was 4.29 months, 3.21 months, and 3.39 months for each case, and when considering the environmental impact assessment, it was 4.24 months, 3.17 months, and 3.35 months for each case. These results appeared equally both when the environmental impact assessment was not include and when it was include. In addition, a sensitivity analysis was conducted for each case to determine how important factors affect the payback period. As a result of the sensitivity analysis, the cost of the heat exchanger was identified as a major factor influencing the overall cost.

Genetic parameters of milk β-hydroxybutyrate acid, milk acetone, milk yield, and energy-corrected milk for Holstein dairy cattle in Korea (국내 Holstein종에서 milk β-hydroxybutyrate acid, milk acetone, 에너지 보정유량 및 산유량의 유전모수 추정)

  • Lee, SeokHyun;Choi, Sungwoon;Dang, Chang-Gwon;Mahboob, Alarn;Do, ChangHee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1349-1360
    • /
    • 2017
  • This study was conducted to estimate the genetic parameters for common ketosis indicators (${\beta}$-hydroxybutyrate acid, BHBA; milk acetone), feed intake efficiency indicator (energy-corrected milk, ECM), and milk yield (MY) in Korean Holstein. A total of 75,072 monthly test-day records from 14,397 first parity cows were collected, between 2012 and 2016, from Korea animal improvement association enrolled farms. Variance components were estimated using a multiple trait random regression model. The heritability of BHBA and acetone levels ranged from 0.06 to 0.15 at different DIMs. The phenotypic and genetic correlations between BHBA and acetone were between 0.73 and 0.90, and between 0.93 and 0.98, respectively. The phenotypic correlation between BHBA and MY, between acetone and MY, between BHBA and ECM, and between acetone and ECM ranged from -0.18 to -0.05, -0.23 to -0.05, 0 to 0.10, and -0.09 to 0.01, respectively. Genetic correlation estimates between BHBA and MY, between acetone and MY, between BHBA and ECM, and between acetone and ECM also ranged from -0.55 to 0.05, -0.62 to -0.04, -0.10 to 0.11, and -0.20 to 0.00, respectively. We hope that these results would greatly assist in the improvement of ketosis disease in the local Holsteins.

Improvement of PWM Driving Control Characteristics for Low Power LED Security Light (저전력형 LED 보안등의 PWM형 구동제어 특성 개선)

  • Park, Hyung-Jun;Kim, Nag-Cheol;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.368-374
    • /
    • 2017
  • In this Paper, we developed a low power type LED security light using LED lighting that substitutes a 220[V] commercial power source for a solar cell module instead of a halogen or a sodium lamp. in addition, a PWM type drive control circuit is designed to minimize the heat generation problem and the drive current of the LED drive controller. in developed system, The light efficiency measurement value is 93.6[lm/W], and a high precision temperature sensor is used inside the controller to control the heat generation of the LED lamp. In order to eliminate the high heat generated from the LED lamp, it is designed to disperse quickly into the atmosphere through the metal insertion type heat sink. The heat control range of LED lighting was $50-55[^{\circ}C]$. The luminous flux and the lighting speed of the LED security lamp were 0.5[s], and the beam diffusion angle of the LED lamp was about $110[^{\circ}C]$ by the light distribution curve based on the height of 6[m].

An Analysis of Safety Management Items for Low Pressure Hydrogen Facility below 0.1MPa in Domestic Hydrogen Town (국내 수소타운 내 0.1MPa 이하 저압 수소 사용시설의 안전관리 항목 분석)

  • Lee, Duk-Gwon;Heo, Doo-Hyun;Lee, Sun-Kyu;Lee, Jung-Woon;Lyu, Geun-Jun;Lee, Yeon-Jae;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.85-91
    • /
    • 2015
  • As the interest in hydrogen energy is being increased, it is a widely issue to develop a lot of hydrogen technologies in the field of production, storage, transportation, application and others. In the aftermath, there is a hydrogen town in Ul San, which is expected to expand application fields of hydrogen energy, as a demonstration project. The hydrogen town in Ul San can consist of high and low pressure part by the gas pressure. The high pressure part is managed by 'the high pressure gas safety control act'. And, low pressure part is managed by 'the guideline for the safety management of demonstration project of hydrogen town'. In this paper, to improve efficiency of safety management, the direction of safety management is reviewed by an analysis of low pressure hydrogen facility and safety management items. And then, some improvement directions are suggested. In the end, it is expected that the results of this study could help to activate construction of hydrogen town and improve efficiency of safety management as well.

Strategy to Recover Rare Earth Elements from a Low Grade Resource via a Chemical Decomposition Method (화학적 분해법을 이용한 난용성 자원으로부터 희토류 회수 특성 연구)

  • Kim, Rina;Cho, Heechan;Jeong, Jinan;Kim, Jihye;Lee, Sugyeong
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, rare earth elements (REE) leaching from a refractory REE ore containing goethite as a major gangue mineral was conducted, introducing a two-stage method of chemical decomposition-acid leaching. At the chemical decomposition step, using one of alkaline agent, NaOH, the ore was decomposed, changing NaOH concentration from 20 to 50 wt% at 10% (w/w) of pulp density and the maximum temperature achieved without boiling at each NaOH concentration. With increasing NaOH concentration, light REE (Ce, La and Nd) and iron were concentrated in the solid phase which is the decomposed product, while aluminum (Al) and phosphorus (P) were removed to the liquid phase, and their concentrations in the solid phase were down to 0.96 and 0.17%, respectively. In addition, through XRD analysis, it was found that the crystallinity of goethite was considerably decreased. At the acid leaching step, the product decomposed by 50 wt% NaOH was leached at 3.0 M HCl and 80 ℃ for 3 hr, then the REE leaching efficiency was above 94% (Ce 80%), and the leaching efficiencies of Al and P were decreased to 12 and 0%, respectively. Therefore, in terms of both REE leaching efficiency and impurity removal, those decomposition and leaching conditions were chosen as optimum processing methods of the investigated material. In terms of REE leaching mechanism, because REE and iron leaching efficiencies showed the positive correlation each other, so it can be concluded that decreasing crystallinity of goethite affect the improvement of REE leaching.

Improvement of Electrochemical Performance of KVO3 as High Capacity Negative Electrode Material for Lithium-ion Batteries (리튬이온 이차전지용 고용량 KVO3 음극의 전기화학적 성능개선)

  • Kim, Tae Hun;Gim, Gyeong Rae;Park, Hwandong;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.148-154
    • /
    • 2019
  • Vanadium oxide based materials have been studied as novel negative electrode materials in lithium-ion batteries (LIBs) because of their high specific capacity. In this study, potassium metavanadate ($KVO_3$) was synthesized and its electrochemical properties are evaluated as a negative electrode materials. The aqueous solution of $NH_4VO_3$ is mixed with a stoichiometric amount of KOH. The solution is boiled to remove $NH_3$ gas and dried to obtain a precipitate. The obtained $KVO_3$ powders are heat-treated at 300 and $500^{\circ}C$ for 8 h in air. As the heat treatment temperature increases, the initial reversible capacity decreases, but the cycle performance and Coulombic efficiency are improved slightly. On the contrary, the electrochemical performances of the $KVO_3$ electrodes are greatly improved when a polyacrylic acid (PAA) as binder was used instead of polyvinylidene fluoride (PVDF) and a fluoroethylene carbonate (FEC) was used as electrolyte additive. The initial reversible capacity of the $KVO_3$ is 1169 mAh/g and the Coulombic efficiency is improved to 76.3% with moderate cycle performance. The $KVO_3$ has the potential as a novel high-capacity negative electrode materials.

Design and Performance Evaluation of Digital Twin Prototype Based on Biomass Plant (바이오매스 플랜트기반 디지털트윈 프로토타입 설계 및 성능 평가)

  • Chae-Young Lim;Chae-Eun Yeo;Seong-Yool Ahn;Myung-Ok Lee;Ho-Jin Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.935-940
    • /
    • 2023
  • Digital-twin technology is emerging as an innovative solution for all industries, including manufacturing and production lines. Therefore, this paper optimizes all the energy used in a biomass plant based on unused resources. We will then implement a digital-twin prototype for biomass plants and evaluate its performance in order to improve the efficiency of plant operations. The proposed digital-twin prototype applies a standard communication platform between the framework and the gateway and is implemented to enable real-time collaboration. and, define the message sequence between the client server and the gateway. Therefore, an interface is implemented to enable communication with the host server. In order to verify the performance of the proposed prototype, we set up a virtual environment to collect data from the server and perform a data collection evaluation. As a result, it was confirmed that the proposed framework can contribute to energy optimization and improvement of operational efficiency when applied to biomass plants.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

Environmental Health Strategies in Korea (우리 나라의 환경정책 방향)

  • 조병극
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • Since 1960's along with industrialization and urbanization, economic growth has been . achieved, however, at the same time, environmental condition has been seriously deteriorated. . Currently, volume of wastewater has been increasing at annual rate of 7% in sewage and 20% in industrial wastewater. However, the nation's sewage treatment serves only 33% of the municipal wastewater as of 1991. Major portion of air pollutants comes from combustion of oil and coal which comprise 81% of total energy use and emission gases from motor vehicles increasing at an accelerated rate. It is known that Korea generates the highest amount of waste per capta. Nevertheless, it is not sufficient to reduce the volume of waste by means of resources recovery and recycling. Recognizing the importance of global environmental problems such as ozone layer depletion, global warming and acid rain, international society has been making various efforts since the 1972 Stockholm conference. In particular, it is expected that the Rio conference which has adopted the Rio declaration and Agenda 21 will form a crucial turning point of the emerging new world order after the Cold War confrontation. To cope with such issues as domestic pollution and global environmental problems, the fundamental national policy aims at harmonizing "environmental protection and sustainable development". The Ministry of Environment has recently set up a mid-term comprehensive plan which includes annual targets for environmental protection. According to the government plan, gradual improvement of various environmental conditions and specific measures to achieve them is planned in time frame. Additional sewage treatment plants will be constructed in urban areas with the target to treat 65% of the nation's municipal sewage by 1996. Supply of clean fuels such as LNG will also be expanded starting from large cities as a cleaner substitute energy for coal and oil. In parallel with expansion of LNG, emphasis will be placed on installation of stack monitoring system. Due to the relatively limited land, government's basic policy for solid waste treatment is to develop large scale landfill facilities rather than small sized ones. Thirty three regional areas have been designated for the purpose of waste management. For each of these regions, big scale landfill site is going to be developed. To increase the rate of waste recycling the government is planning to reinforce separate collection system and to provide industries with economic incentives. As a part of meeting the changing situation on global environmental problems after UNCED, and accommodation regulatory measures stipulated in the global environmental conventions and protocols, national policy will try to alter industrial and economic structure so as to mitigate the increasing trends of energy consumption, by encouraging energy conservation and efficiency. In this regard, more attention will be given to the policy on the development of the cleaner technology. Ultimately, these policies and programs will contribute greatly to improving the current state of national public health.

  • PDF

Measurements of the Thermal Conductivity of Domestic Bentonite for Improving the Physical Performance of Buffer (완충재의 물리적 성능향상을 위한 국내 벤토나이트의 열전도도 측정실험)

  • Kim, Geon-Young;Kim, Seung-Soo;Choi, Jong-Won;Park, Seong-Wan;Bae, Dae-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.2 s.48
    • /
    • pp.89-98
    • /
    • 2006
  • The thermal conductivities of bentonite blocks with various dry densities (1.6 and $1.8g/cm^3$), water contents (5, 9.4, 15, 20 wt%) and sand contents (0, 10, 20, 30 wt%) were measured in order to investigate the improvement in physical performance of buffer as an engineered barrier. The raw material was domestic bentonite from Oksan mine located in Gyeongju city. The increase in water content was most effective for improving the thermal conductivity. Especiallly, the bentonite blocks with more than 15 wt% of water content showed more than 1.0 W/mK values of thermal conductivity regardless of their dry densities and sand contents. Therefore, if the domestic Oksan bentonite is used as a buffer material, we can suggest that the manufacture of bentonite block having dry density of $1.6g/cm^3$, sand content of $10{\sim}30$ wt% and water content of 15 wt% will be most effective considering the easiness of a manufacturing of bentonite block and the efficiency of an increase in the thermal conductivity.