• Title/Summary/Keyword: Energy Efficiency Function

Search Result 524, Processing Time 0.029 seconds

Blockchain-based Smart Meter Authentication Protocol in Smart Grid Environment (스마트 그리드 환경에서 블록체인 기반 스마트 미터 인증 프로토콜)

  • Jonghyun Kim;Myeonghyun Kim;Youngho Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.41-54
    • /
    • 2023
  • Smart grid that supports efficient energy production and management is used in various fields and industries. However, because of the environment in which services are provided through open networks, it is essential to resolve trust issues regarding security vulnerabilities and privacy preservation. In particular, the identification information of smart meter is managed by a centralized server, which makes it vulnerable to security attacks such as device stolen, data forgery, alteration, and deletion. To solve these problems, this paper proposes a blockchain based authentication protocol for a smart meter. The proposed scheme issues an unique decentralized identifiers (DIDs) for individual smart meter through blockchain and utilizes a random values based on physical unclonable function (PUF) to strengthen the integrity and reliability of data. In addition, we analyze the security of the proposed scheme using informal security analysis and AVISPA simulation, and show the efficiency of the proposed scheme by comparing with related work.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

Performance of different absorber materials and move-in/out strategies for the control rod in small rod-controlled pressurized water reactor: A study based on KLT-40 model

  • Zhiqiang Wu;Jinsen Xie;Pengyu Chen;Yingjie Xiao;Zining Ni;Tao Liu;Nianbiao Deng;Aikou Sun;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2756-2766
    • /
    • 2024
  • Small rod-controlled pressurized water reactors (PWR) are the ideal energy source for vessel propulsion, benefiting from their high reactivity control efficiency. Since the control rods (CRs) increase the complexity of reactivity control, this paper seeks to study the performance of CRs in small rod-controlled PWRs to extend the lifetime and reduce power offset due to CRs. This study investigates CR grouping, move-in/out strategies, and axially non-uniform design effects on core neutron physics metrics. These metrics include axial offset (AO), core lifetime (CL), fuel utilization (FU), and radial power peaking factor (R-PPF). To simulate the movement of the CRs, a "Critical-CR-burnup" function was developed in OpenMC. In CR designs, the CRs are grouped into three banks to study the simultaneous and prioritized move-in/out strategies. The results show CL extension from 590 effective full power days (EFPDs) to 638-698 EFPDs. A lower-worth prioritized strategy minimizes AO and the extremum values decrease from -0.69 and + 0.81 to -0.28 and + 0.51. Although an axially non-uniform CR design can improve AO at the beginning of cycle (BOC), considering the overall CR worth change is crucial, as a significant decrease can adversely impact axial power distribution during the middle of cycle (MOC).

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

A Study on the Efficiency Improvement Method of Photovoltaic System Using DC-DC Voltage Regulator (DC-DC 전압 레귤레이터를 이용한 태양광전원의 효율향상 방안에 관한 연구)

  • Tae, Donghyun;Park, Jaebum;Kim, Miyoung;Choi, Sungsik;Kim, Chanhyeok;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.704-712
    • /
    • 2016
  • Recently, the installation of photovoltaic (PV) systems has been increasing due to the worldwide interest in eco-friendly and infinitely abundant solar energy. However, the output power of PV systems is highly influenced by the surrounding environment. For instance, a string of PV systems composed of modules in series may become inoperable under cloudy conditions or when in the shade of a building. In other words, under these conditions, the existing control method of PV systems does not allow the string to be operated in the normal way, because its output voltage is lower than the operating range of the grid connected inverter. In order to overcome this problem, we propose a new control method using a DC-DC voltage regulator which can compensate for the voltage of each string in the PV system. Also, based on the PSIM S/W, we model the DC-DC voltage regulator with constant voltage control & MPPT (Maximum Power Point Tracking) control functions and 3-Phase grid connected inverter with PLL (Phase-Locked Loop) control function. From the simulation results, it is confirmed that the present control method can improve the operating efficiency of PV systems by compensating for the fluctuation of the voltage of the strings caused by the surrounding conditions.

Flotation for Recycling of a Waste Water Filtered from Molybdenite Tailings (몰리브덴 선광광미 응집여과액 재활용을 위한 부유선별 특성)

  • Park, Chul-Hyun;Jeon, Ho-Seok;Han, Oh-Hyung;Kim, Byoung-Gon;Baek, Sang-Ho;Kim, Hak-Sun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Froth flotation using the residual water in the end of flotation process has been performed through controlling of pH. IEP (isoelectric point) of molybdenite and quartz in distilled water was below pH 3 and pH 2.7, respectively and the stabilized range was pH 5~10. In case of a suspension in reusing water, zeta potential of molybdenite decreased to below -10 mV or less at over pH 4 due to residual flocculants. As result of pH control, flotation efficiency in the alkaline conditions was deteriorated by flocculation, resulting from expanded polymer chain, ion bridge of the divalent metal cations ($Ca^{2+}$), and hydrophobic interactions between the nonpolar site of polymer/the hydrophobic areas of the particle surfaces. However, the weak acid conditions (pH 5.5~6) improved the efficiency of flotation as hydrogen ions neutralize polymer chains and then weakened its function. In cleans after rougher flotation, the Mo grade of 52.7% and recovery of 90.1% could be successfully obtained under the conditions of 20 g/t kerosene, 50 g/t AF65, 300 g/t $Na_2SiO_3$, pH 5.5 and 2 cleaning times. Hence, we developed a technique which can continuously supply waste water filtered from tailings into the grinding-rougher-cleaning processes.

A Study of a Pilot Test for a Blasting Performance Evaluation Using a Dry Hole Charged with ANFO (건공화 공법의 발파 성능 평가를 위한 현장 시험에 관한 연구)

  • Lee, Seung Hun;Chong, Song-Hun;Choi, Hyung Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.197-208
    • /
    • 2022
  • The existence of shallow bedrock and the desire to use underground space necessitate the use of blasting methods. The standard blasting method under water after drilling is associated with certain technical difficulties, including reduced detonation power, the use of a fixed charge per delay, and decoupling. However, there is no blasting method to replace the existing blasting method. In this paper, a dry hole charged with ANFO blasting is assessed while employing a dry hole pumping system to remove water from the drill borehole. Additional standard blasting is also utilized to compare the blasting performances of the two methods. The least-squares linear regression method is adopted to analyze the blasting vibration velocity quantitatively using the measured vibration velocity for each blasting method and the vibration velocity model as a function of the scaled distance. The results show that the dry hole charged with ANFO blasting will lead to greater damping of the blasting vibration, more energy dissipation to crush the surrounding rock, and closer distances for the allowable velocity of the blasting vibration. Also, standard blasting shows much longer influencing distances and a wider range of the blasting pattern. The pilot test confirms the blasting efficiency of dry hole charged with ANFO blasting.

The Removal Characteristics of Cs$^{+}$ and Co$^{++}$ from Aqueous Wastes by Ultrafiltration in Combination with Chemical Treatment Techniques(II) (화학처리와 한외여과막의 결합공정에 의한 Cs 및 Co의 제거특성 (II))

  • 이근우;정경환;김길청;김준형
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • The objective of this investigation is to establish the rejection characteristics of caesium and cobalt from radioactive liquid waste by chemical/ultrafiltration process. An extensive experimental investigation was conducted with inactive caesium and cobalt ions, utilizing ultrafiltration stirred cell. Caesium and cobalt could be effectively removed from waste solution using copper ferrocyanide and polyarcylic acid(PAA). The rejection dependence of the caesium was found to be a function of caesiun to potassium copper ferrocyanide feed molar ratio. The binding behavior of caesium on K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$, particles was explained in terms of a Langmuir adsorption isotherm. When Cs/K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$molar ratio was 1.5, the removal of caesium was the most efficient. The rejection efficiency of cobalt is dependent upon various parameters such as pH, cobalt concentration and PAA concentration. The rejection behavior of cobalt was explained in term of a equilibrium model taking into account the reaction between the ligand group, the proton and the cobalt ion. At the conditions of PAA/Co ratio of 2 and pH of 5.6, the removal of cobalt was over 90%. Also, the effect of chemical addition sequence for the simultaneously removal of caesiun and cobalt was discussed.

  • PDF

Skill Assessments for Evaluating the Performance of the Hydrodynamic Model (해수유동모델 검증을 위한 오차평가방법 비교 연구)

  • Kim, Tae-Yun;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • To evaluate the performance of the hydrodynamic model, we introduced 10 skill assessments that are assorted by two groups: quantitative skill assessments (Absolute Average Error or AAE, Root Mean Squared Error or RMSE, Relative Absolute Average Error or RAAE, Percentage Model Error or PME) and qualitative skill assessments (Correlation Coefficient or CC, Reliability Index or RI, Index of Agreement or IA, Modeling Efficiency or MEF, Cost Function or CF, Coefficient of Residual Mass or CRM). These skill assessments were applied and calculated to evaluate the hydrodynamic modeling at one of Florida estuaries for water level, current, and salinity as comparing measured and simulated values. We found that AAE, RMSE, RAAE, CC, IA, MEF, CF, and CRM are suitable for the error assessment of water level and current, and AAE, RMSE, RAAE, PME, CC, RI, IA, CF, and CRM are good at the salinity error assessment. Quantitative and qualitative skill assessments showed the similar trend in terms of the classification for good and bad performance of model. Furthermore, this paper suggested the criteria of the "good" model performance for water level, current, and salinity. The criteria are RAAE < 10%, CC > 0.95, IA > 0.98, MEF > 0.93, CF < 0.21 for water level, RAAE < 20%, CC > 0.7, IA > 0.8, MEF > 0.5, CF < 0.5 for current, and RAAE < 10%, PME < 10%, CC > 0.9, RI < 1.15, CF < 0.1 for salinity.