• Title/Summary/Keyword: Energy Dispersive X-ray Spectroscopy(EDX)

Search Result 146, Processing Time 0.019 seconds

DISSIMILAR FRICTION-STIR WELDING OF ALALLOY 1050 AND MGALLOY AZ31

  • Park, Seung Hwan C.;Masato Michiuchi;Yutaka S. Sato;Hiroyuki Kokawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.534-538
    • /
    • 2002
  • Dissimilar friction stir welding of aluminum (AI) alloy 1050 and magnesium (Mg) alloy AZ31 was successfully done in the limited welding parameters. The dissimilar weld showed good quality and facility compared to conventional fusion weld. Transverse cross section perpendicular to the welding direction had no defects. The weld was divided into base material of Al alloy, an irregular shaped stir zone and base material of Mg alloy. The irregular shaped stir zone was roughly located around the initial weld center. The weld interface near plate surface shifted from initial weld centerline to the advancing side. Hardness profile of the weld was heterogeneous, and the hardness value of the stir zone was raised to about 150 Hv to 250 Hv. The mixed phase was identified to intermetallic compound $Mg_{17}$Al$_{12}$ using x-ray diffraction method, energy dispersive x-ray spectroscopy (EDX) and electron probe micro analysis (EPMA). The formation of intermetallic compound $Mg_{17}$Al$_{12}$ during FSW causes the remarkable increase in hardness value in the stir zone.one.

  • PDF

Preparation of Al@Fe2O3 Core-Shell Composites Using Amphiphilic Graft Copolymer Template

  • Patel, Rajkumar;Kim, Sang Jin;Kim, Jin Kyu;Park, Jung Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.209-213
    • /
    • 2014
  • A graft copolymer of poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a structure-directing agent to prepare $Al@Fe_2O_3$ core-shell nanocomposites through a sol-gel process. The amphiphilic property of PVC-g-POEM allows for good dispersion of Al particles and leads to specific interaction with iron ethoxide, a precursor of $Fe_2O_3$. Secondary bonding interaction in the sol-gel composites was characterized by Fourier transform-infrared (FT-IR) spectroscopy. The well-organized morphology of $Al@Fe_2O_3$ core-shell nanocomposites was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to analyze the elemental composition and crystallization structure of the composites.

Preparation and Characterization and Visible Light Photocatalytic Activity of Fe-Treated AC/TiO2 Composites for Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.621-626
    • /
    • 2009
  • Fe-AC/Ti$O_2$ photocatalysts were prepared by a sol-gel method. The photocatalytic properties of Fe-AC/Ti$O_2$ photocatalysts for the purification of water have been investigated. The samples were characterized by scanning electron microscopy (SEM), specific surface area (BET), X-ray diffraction analysis (XRD), and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. It was found that the prepared Fe-AC/Ti$O_2$ composites have an excellent photocatalytic under visible light irradiation. A small amount of Fe ions in the AC/Ti$O_2$ composites could obviously enhance their photocatalytic activity. The high activities of the Fe-AC/Ti$O_2$ composites could be attributed to the results of the synergetic effects of the enhancement of the Fe element, the photocatalytic activity of Ti$O_2$, and the adsorption of AC.

Photocatalytic Degradation of Methylene Blue by CNT/TiO2 Composites Prepared from MWCNT and Titanium n-butoxide with Benzene

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.651-657
    • /
    • 2008
  • In this study, CNT/$TiO_2$ composites were prepared using surface modified Multiwall carbon nanotube (MWCNT) and titanium n-butoxide (TNB) with benzene. The composites were characterized by nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), FT-IR spectra, and UV-vis absorption spectroscopy. The UV radiation induced photoactivity of the CNT/$TiO_2$ composites was tested using a fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution. Finally, it can be considered that the MB removal effect of the CNT/$TiO_2$ composites is not only due to the adsorption effect of MWCNT and photocatalytic degradation of $TiO_2$, but also to electron transfer between MWCNT and $TiO_2$.

Effect of Heat Treatment Conditions on the Microstructure and Wear Behavior of Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 미세구조 및 마모거동에 미치는 후열처리 조건의 영향)

  • Kim, K.T.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • This study aims at investigating the effect of heat treatment conditions on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coatings. Ni-based self-flux alloy powders were sprayed onto a carbon steel substrate and then heat-treated at 700, 800, 900 and $1000^{\circ}C$ for 30 minutes in a vacuum furnace. Dry sliding wear tests were performed using sliding speed of 0.4 m/s and applied load of 6 N. AISI 52100 ball(diameter 8 mm) was used as counterparts. Microstructure and wear behavior of both as-sprayed and heat-treated Ni-based self-flux alloy coatings were studied using a scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX), electron probe micro-analysis(EPMA) and X-ray diffraction(XRD). It was revealed that microstructure and wear behavior of thermally sprayed Ni-based self-flux alloy coatings were much influenced by heat treatment conditions.

  • PDF

Fabrication and Electro-photolysis Property of Carbon Nanotubes/Titanium Composite Photocatalysts for Methylene Blue

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1798-1804
    • /
    • 2009
  • In this study, we have studied on improved performance of carbon nanotubes/titanium (CNT/TiO2) structure electrode for methylene blue (MB). The composite electrodes consisting of CNTs and a titanium oxide matrix with phenol resin binder was fabricated with a mixture method. The chemical and morphological structure of CNT/Ti$O_2$ composites were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis absorption technique, Raman spectroscopy and energy dispersive X-ray (EDX). The electrode showed a remarkably enhanced performance for MB oxidation under UV illumination with or without electro-chemical reaction (ECR). Such a remarkably improved performance of the CNT/Ti$O_2$ structure electrode might be due to the enhanced MB oxidation by electro- and photo-generated electrons and holes in the CNTs and Ti$O_2$ under UV illumination with or without ECR.

Preparation of MWCNT/TiO2 Composites by Using MWCNTs and Titanium(IV) Alkoxide Precursors in Benzene and their Photocatalytic Effect and Bactericidal Activity

  • Oh, Won-Chun;Zhang, Feng-Jun;Chen, Ming-Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2637-2642
    • /
    • 2009
  • In this present paper, we prepared $MWCNT/TiO_2$ composites by using pre-oxidized multi-walled carbon nanotubes (MWCNTs) with different titanium alkoxide precursors in benzene solvent. The composites were comprehensively characterized by BET surface area, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and UV-Vis absorption spectroscopy. The photoactivity of the prepared materials, under UV irradiation, was tested using methylene blue (MB) in aqueous solution. Finally, according to the results of MB removal experiment, it can be considered that the MB degradation infect mainly caused by photocatalytic effect of $TiO_2$. Furthermore, the bactericidal test of the composites was also determined. It was indicated that $MWCNT/TiO_2$ composites with sunlight had greater effectiveness for B. cereus, S. aureus and E. coli than any other experimental conditions.

Photonic Aspects of MB Degradation on Fe-carbon/TiO2 Composites under UV Light Irradiation

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.433-438
    • /
    • 2010
  • Fe-carbon/$TiO_2$ composites were prepared by a sol-gel method using AC, ACF, CNT and $C_{60}$ as carbon precursors and were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The activity of the prepared photocatalysts was investigated by degradation reaction of methylene blue (MB) irradiated with UV lamp. Effects of different carbon sources and irradiation time on photocatalytic activity were also investigated. The results showed that the photocatalytic activity of the Fe-carbon/$TiO_2$ composites was much higher than that of pristine $TiO_2$ and Fe/$TiO_2$ composites. The prominent photocatalytic activity of Fecarbon/$TiO_2$ composites could be attributed to both the effects of photo-adsorption and electron transfer by carbon substrate. In addition, the higher photocatalytic activity of Fe-carbon/$TiO_2$ composites can be compared with that of carbon/$TiO_2$ and Fe /$TiO_2$ composites due to cooperative effects between Fe and carbon.

Effect of Ultrasonic Process of Electroless Ni-P-Al2O3 Composite Coatings

  • Yoon, Jin-Doo;Koo, Bon-Heun;Hwang, Hwan-Il;Seo, Sun-Kyo;Park, Jong-Kyu
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.6
    • /
    • pp.315-323
    • /
    • 2021
  • In general, surface treatments of electroless Ni-P coating are extensively applied in the industry due to their excellent properties for considerable wear resistance, hardness, corrosion resistance. This study aims to determine the effect of ultrasonic conditions on the morphology, alumina content, roughness, hardness, and corrosion resistance of electroless Ni-P-Al2O3 composite coatings. The characteristics were analyzed by Energy-dispersive X-ray spectroscopy (EDX), x-ray diffractions (XRD), and atomic force microscopy (AFM), etc. In this study, the effect of ultrasonic condition uniformly distributed alumina within Ni-P solution resulting in a smoother surface, lower surface roughness. Furthermore, the corrosion resistance behavior of the coating was analyzed using tafel polarization curves in a 3.5 wt.% NaCl solution at 25 ℃. Under ultrasonic, Al2O3 content in Ni-P composite solution increased from 0.5 to 5.0 g/L, Al2O3 content at 3.0 g/L was showed a significantly enhanced corrosion resistance. These results suggested that ultrasonic condition was an effective method to improve the properties of the composite coating.

Inhibitory Effect of Benzoate-intercalated Hydrotalcite with Ce3+-loaded clay on Carbon Steel

  • Thuy Duong Nguyen;Thu Thuy Pham;Anh Son Nguyen;Ke Oanh Vu;Gia Vu Pham;To Thi Xuan Hang
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This work studied the inhibitory effect of the combination of benzoate-intercalated hydrotalcite (HT-BZ) and Ce3+-loaded clay (Clay-Ce) on carbon steel (CS). HT-BZ was prepared by the co-precipitation method and Clay-Ce was fabricated by a cation exchange reaction. HT-BZ and Clay-Ce were assessed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) coupled with zeta potential measurement. Electrochemical measurements coupled with scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) were used for studying the inhibitory action of the mixture of HT-BZ and Clay-Ce on steel electrodes immersed in 0.1 M NaCl. For comparison, the inhibitory effect of HT-BZ or Clay-Ce alone was also evaluated. The results showed that HT-BZ combined with Clay-Ce provided synergistic inhibition of the CS substrate. The mixture of 0.5 g/L HT-BZ + 0.5 g/L Clay-Ce provided 93.5% inhibition efficiency. The protective mechanism of the HT-BZ + Clay-Ce mixture consisted of the reaction of released BZ and Ce3+ and the deposition of HT-BZ and Clay-Ce structures on the CS substrate.