DOI QR코드

DOI QR Code

Preparation of MWCNT/TiO2 Composites by Using MWCNTs and Titanium(IV) Alkoxide Precursors in Benzene and their Photocatalytic Effect and Bactericidal Activity

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University,Anhui Key Laboratory of Advanced Building Materials, Anhui University of Architecture) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2009.11.20

Abstract

In this present paper, we prepared $MWCNT/TiO_2$ composites by using pre-oxidized multi-walled carbon nanotubes (MWCNTs) with different titanium alkoxide precursors in benzene solvent. The composites were comprehensively characterized by BET surface area, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and UV-Vis absorption spectroscopy. The photoactivity of the prepared materials, under UV irradiation, was tested using methylene blue (MB) in aqueous solution. Finally, according to the results of MB removal experiment, it can be considered that the MB degradation infect mainly caused by photocatalytic effect of $TiO_2$. Furthermore, the bactericidal test of the composites was also determined. It was indicated that $MWCNT/TiO_2$ composites with sunlight had greater effectiveness for B. cereus, S. aureus and E. coli than any other experimental conditions.

Keywords

References

  1. Venkatachalam, N.; Palanichamy, M.; Murugesan, V. J. Mol. Catal. A 2007, 273, 177 https://doi.org/10.1016/j.molcata.2007.03.077
  2. Sobana, N.; Swaminathan, M. Sep. Purif. Technol. 2007, 56, 101 https://doi.org/10.1016/j.seppur.2007.01.032
  3. Habibi, M. H.; Vosooghian, H. J. Photochem. Photobiol. A 2005, 174, 45 https://doi.org/10.1016/j.jphotochem.2005.02.012
  4. Andronic, L.; Duta, A. Thin Solid Films 2007, 515, 6294 https://doi.org/10.1016/j.tsf.2006.11.150
  5. Evans, P.; Mantke, S.; Mills, A.; Robinson, A.; Sheel, D. W. J. Photochem. Photobiol. A 2007, 188, 387 https://doi.org/10.1016/j.jphotochem.2006.12.040
  6. El-Sharkawy, E. A.; Solimanb, A. Y.; Al-Amer, K. M. J. Colloid Interface Sci. 2007, 310, 498 https://doi.org/10.1016/j.jcis.2007.02.013
  7. Orlov, A.; Jefferson, D. A.; Tikhov, M.; Lambert, R. M. Catal. Commun. 2007, 8, 821 https://doi.org/10.1016/j.catcom.2006.08.040
  8. Bejarano-Perez, N. J.; Suarez-Herrera, M. F. Ultrason. Sonochem. 2007, 14, 589 https://doi.org/10.1016/j.ultsonch.2006.09.011
  9. Patil, P. S.; Mujawar, S. H.; Inamdar, A. I.; Shinde, P. S. Appl. Surf. Sci. 2005, 252, 1643 https://doi.org/10.1016/j.apsusc.2005.03.074
  10. Fujishima, A.; Honda, K. Nature 1972, 238, 37 https://doi.org/10.1038/238037a0
  11. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry. In; John Wiley Sons: New York, 1988; p 654
  12. Fujishima, A.; Rao, T. N.; Tryk, D. A. Electrochim. Acta 2000, 45, 4683 https://doi.org/10.1016/S0013-4686(00)00620-4
  13. Kawai, T.; Sakata, T. Nature 1980, 286, 474 https://doi.org/10.1038/286474a0
  14. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  15. Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V. et al. J. Am. Ceram. Soc. 1997, 80, 3157 https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
  16. Mills, A.; LeHunte, S. J. Photochem. Photobiol. A 1997, 108, 1 https://doi.org/10.1016/S1010-6030(97)00118-4
  17. Motos, J.; Laine, J.; Hermann, J. M. J. Catal. 2001, 200, 10 https://doi.org/10.1006/jcat.2001.3191
  18. Dagan, G.; Tomkiewicz, M. J. Phys. Chem. 1993, 97, 12651 https://doi.org/10.1021/j100151a001
  19. Dagan, G.; Tomkiewicz, M. J. Non-Cryst. Solids. 1994, 175, 294 https://doi.org/10.1016/0022-3093(94)90023-X
  20. Robert, D.; Parra, S.; Pulgarin, C.; Krzton, A.; Weber, J. V. Appl. Surf. Sci. 2000, 167, 51 https://doi.org/10.1016/S0169-4332(00)00496-7
  21. Salvetat-Delmontte, J. P.; Rubio, A. Carbon 2000, 40, 1729
  22. Saito, T.; Matsushige, K.; Tanaka, K. Physica B 2002, 323, 280 https://doi.org/10.1016/S0921-4526(02)00999-7
  23. Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Beguin, F.; Bonnamy, S. Carbon 2004, 42, 1147 https://doi.org/10.1016/j.carbon.2003.12.041
  24. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. J. Mol. Catal. A: Chem. 2005, 235, 194 https://doi.org/10.1016/j.molcata.2005.02.027
  25. Oh, W. C.; Chen, M. L. Bull. Korean Chem. Soc. 2008, 29, 159 https://doi.org/10.5012/bkcs.2008.29.1.159
  26. Chen, M. L.; Oh, W. C. Analytical Science & Technology 2008, 21, 229
  27. Chen, M. L.; Zhang, F. J.; Oh, W. C. Journal of the Korean Ceramic Society 2008, 45, 651 https://doi.org/10.4191/KCERS.2008.45.1.651
  28. Chen, M. L.; Zhang, F. J.; Oh, W. C. Analytical Science & Technology 2008, 21, 553
  29. Zhang, Z. H.; Yuan, Y.; Liang, L. H.; Fang, Y. J.; Cheng, Y. X.; Ding, H. C. et al. Ultrason. Sonochem. 2008, 15, 370
  30. Chen, M. L.; Bae, J. S.; Oh, W. C. Analytical Science & Technology 2006, 19, 460
  31. Berman, E. Heyden and Son, London 1980, 116
  32. Oh, W. C.; Jang, W. C. Carbon 2003, 41, 1737 https://doi.org/10.1016/S0008-6223(03)00119-2
  33. Oh, W. C. Bull. Korean Chem. Soc. 2004, 25, 639 https://doi.org/10.5012/bkcs.2004.25.5.639
  34. Hernadi, K.; Ljubovic, E.; Seo, J. W.; Forro, L. Acta Materialia 2003, 51, 1447 https://doi.org/10.1016/S1359-6454(02)00539-6
  35. Wang, W.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B Env. 2005, 56, 305 https://doi.org/10.1016/j.apcatb.2004.09.018
  36. Sun, J.; Gao, L.; Iwasa, M. Chem. Comm. 2004, 7, 832
  37. Inagaki, M.; Hirose, Y.; Matsunaga, T.; Tsumura, T.; Toyoda, M. Carbon 2003, 41, 2619 https://doi.org/10.1016/S0008-6223(03)00340-3
  38. Wang, S.; Shi, X. L.; Shao, G. Q.; Duan, X. L.; Yang, H.; Wang, T. G. J. Phys. Chem. Solids 2008, 69, 2396 https://doi.org/10.1016/j.jpcs.2008.04.029
  39. Yu, Y.; Yu, J. C.; Chan, C. Y.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K. Appl. Catal. B Env. 2005, 61, 1 https://doi.org/10.1016/j.apcatb.2005.03.008
  40. Barakat, M. A.; Schaeffer, H.; Hayes, G.; Ismat-Shah, S. Appl. Catal. B: Environ. 2005, 57, 23 https://doi.org/10.1016/j.apcatb.2004.10.001
  41. Barakat, M. A.; Chen, Y. T.; Huang, C. P. Appl. Catal. B: Environ. 2004, 53, 13 https://doi.org/10.1016/j.apcatb.2004.05.003
  42. Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. J. Catal. 2001, 203, 82 https://doi.org/10.1006/jcat.2001.3316
  43. Oh, W. C.; Park T. S. J. Ind. Eng. Chem. 2005, 11, 671 https://doi.org/10.1021/ie50115a020

Cited by

  1. Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation vol.1, pp.5, 2011, https://doi.org/10.1039/c1cy00021g
  2. Photodegradation of organic dyes over nickel distributed CNT/TiO2 composite synthesized by a simple sol-gel method vol.29, pp.2, 2011, https://doi.org/10.2478/s13536-011-0023-7
  3. Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1657
  4. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems? vol.14, pp.9, 2012, https://doi.org/10.1007/s11051-012-1093-0
  5. Photonic Activity for MB Solution of Metal Oxide/CNT Catalysts Derived from Different Organometallic Compounds vol.20, pp.2, 2012, https://doi.org/10.1080/1536383X.2010.533302
  6. Synthesis of Carbon Nanomaterials-CdSe Composites and Their Photocatalytic Activity for Degradation of Methylene Blue vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/964872
  7. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application vol.6, pp.1, 2016, https://doi.org/10.1038/srep29683
  8. -based Photocatalysis: Toward Visible Light-Responsive Photocatalysts Through Doping and Fabrication of Carbon-Based Nanocomposites vol.42, pp.4, 2017, https://doi.org/10.1080/10408436.2016.1211507
  9. Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution vol.6, pp.1, 2011, https://doi.org/10.1186/1556-276X-6-398
  10. Synthesis and photocatalytic behaviors of Cr2O3-CNT/TiO2 composite materials under visible light vol.45, pp.24, 2009, https://doi.org/10.1007/s10853-010-4751-6
  11. The Photodegradation Effect of Organic Dye for Metal Oxide (Cr2O3, MgO and V2O3) Treated CNT/TiO2 Composites vol.32, pp.3, 2009, https://doi.org/10.5012/bkcs.2011.32.3.815
  12. Influence of Inorganic Ions and pH on the Photodegradation of 1-Methylimidazole-2-thiol with TiO2 Photocatalyst Based on Magnetic Multi-walled Carbon Nanotubes vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.76
  13. Synthesis and Surface Modification of TiO2-Based Photocatalysts for the Conversion of CO2 vol.10, pp.2, 2020, https://doi.org/10.3390/catal10020227