DOI QR코드

DOI QR Code

Inhibitory Effect of Benzoate-intercalated Hydrotalcite with Ce3+-loaded clay on Carbon Steel

  • Thuy Duong Nguyen (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Thu Thuy Pham (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Anh Son Nguyen (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Ke Oanh Vu (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Gia Vu Pham (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • To Thi Xuan Hang (Institute for Tropical Technology, Vietnam Academy of Science and Technology)
  • Received : 2022.08.04
  • Accepted : 2022.10.17
  • Published : 2023.03.02

Abstract

This work studied the inhibitory effect of the combination of benzoate-intercalated hydrotalcite (HT-BZ) and Ce3+-loaded clay (Clay-Ce) on carbon steel (CS). HT-BZ was prepared by the co-precipitation method and Clay-Ce was fabricated by a cation exchange reaction. HT-BZ and Clay-Ce were assessed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) coupled with zeta potential measurement. Electrochemical measurements coupled with scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) were used for studying the inhibitory action of the mixture of HT-BZ and Clay-Ce on steel electrodes immersed in 0.1 M NaCl. For comparison, the inhibitory effect of HT-BZ or Clay-Ce alone was also evaluated. The results showed that HT-BZ combined with Clay-Ce provided synergistic inhibition of the CS substrate. The mixture of 0.5 g/L HT-BZ + 0.5 g/L Clay-Ce provided 93.5% inhibition efficiency. The protective mechanism of the HT-BZ + Clay-Ce mixture consisted of the reaction of released BZ and Ce3+ and the deposition of HT-BZ and Clay-Ce structures on the CS substrate.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of the Vietnam Academy of Science and Technology under the project number NCVCC 13.05/21-21 for senior researchers and the project number TDVLTT.04/21-23.

References

  1. M. Tabish, J. Zhao, J. Wang, M.J. Anjum, Y. Qiang, Q. Yang, M.A. Mushtaq, G. Yasin, Improving the corrosion protection ability of epoxy coating using CaAl LDH intercalated with 2-mercaptobenzothiazole as a pigment on steel substrate, Progress in Organic Coatings, 165, 106765 (2022). Doi: https://doi.org/10.1016/j.porgcoat.2022.106765
  2. L. Garden, R.A. Pethrick, A dielectric study of water uptake in epoxy resin systems, Journal of Applied Polymer Science, 134, 44717 (2017). Doi: https://doi.org/10.1002/app.44717
  3. D. T. Nguyen, H. T. X. To, J. Gervasi, Y. Paint, M. Gonon, M.-G. Olivier, Corrosion inhibition of carbon steel by hydrotalcites modified with different organic carboxylic acids for organic coatings, Progress in Organic Coatings, 124, 256 (2018). Doi: https://doi.org/10.1016/j.porgcoat.2017.12.006
  4. D. Nguyen Thuy, H. To Thi Xuan, A. Nicolay, Y. Paint, M.-G. Olivier, Corrosion protection of carbon steel by solvent free epoxy coating containing hydrotalcites intercalated with different organic corrosion inhibitors, Progress in Organic Coatings, 101, 331 (2016). Doi: https://doi.org/10.1016/j.porgcoat.2016.08.021
  5. D. Dwivedi, K. Lepkova, T. Becker, Carbon steel corrosion: a review of key surface properties and characterization methods, RSC Advances, 7, 4580 (2017). Doi: https://doi.org/10.1039/C6RA25094G
  6. B. Wu, J. Zuo, B. Dong, F. Xing, C. Luo, Study on the affinity sequence between inhibitor ions and chloride ions in Mg Al layer double hydroxides and their effects on corrosion protection for carbon steel, Applied Clay Science, 180, 105181 (2019). Doi: https://doi.org/10.1016/j.clay.2019.105181
  7. J. Rodriguez, E. Bollen, T. D. Nguyen, A. Portier, Y. Paint, M. G. Olivier, Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn-Mg coated steel, Progress in Organic Coatings, 149, 105894 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2020.105894
  8. T. D. Nguyen, A. S. Nguyen, B. A. Tran, K.O. Vu, D. L. Tran, T. T. Phan, N. Scharnagl, M. L. Zheludkevich, T. X. H. To, Molybdate intercalated hydrotalcite/graphene oxide composite as corrosion inhibitor for carbon steel, Surface and Coatings Technology, 399, 126165 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126165
  9. G. J. Ayemi, S. Marcelin, S. Therias, F. Leroux, B. Normand, Synergy effect between layer double hydroxide (LDH) and EDDS for corrosion inhibition of carbon steel, Applied Clay Science, 222, 106497 (2022). Doi: https://doi.org/10.1016/j.clay.2022.106497
  10. H. Yan, J. Wang, Y. Zhang, W. Hu, Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide, Journal of Alloys and Compounds, 678, 171 (2016). Doi: https://doi.org/10.1016/j.jallcom.2016.03.281
  11. T. T. Thai, A. T. Trinh, M.-G. Olivier, Hybrid sol-gel coatings doped with cerium nanocontainers for active corrosion protection of AA2024, Progress in Organic Coatings, 138, 105428 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2019.105428
  12. S. Akbarzadeh, L. Sopchenski Santos, V. Vitry, Y. Paint, M.-G. Olivier, Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating, Surface and Coatings Technology, 434, 128168 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128168
  13. S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, 28, 1539 (2003). Doi: https://doi.org/10.1016/j.progpolymsci.2003.08.002
  14. T. T. X. Hang, T. A. Truc, M.-G. Olivier, C. Vandermiers, N. Guerit, N. Pebere, Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay, Progress in Organic Coatings, 69, 410 (2010). Doi: https://doi.org/10.1016/j.porgcoat.2010.08.004
  15. T. A. Truc, T. T. Thuy, V. K. Oanh, T. T. X. Hang, A. S. Nguyen, N. Causse, N. Pebere, 8-hydroxyquinoline-modified clay incorporated in an epoxy coating for the corrosion protection of carbon steel, Surfaces and Interfaces, 14, 26 (2019). Doi: https://doi.org/10.1016/j.surfin.2018.10.007
  16. T. Trinh Anh, H. To Thi Xuan, O. Vu Ke, E. Dantras, C. Lacabanne, D. Oquab, N. Pebere, Incorporation of an indole-3 butyric acid modified clay in epoxy resin for corrosion protection of carbon steel, Surface and Coatings Technology, 202, 4945 (2008). Doi: https://doi.org/10.1016/j.surfcoat.2008.04.092
  17. Y. Morozov, L. M. Calado, R. A. Shakoor, R. Raj, R. Kahraman, M. G. Taryba, M. F. Montemor, Epoxy coatings modified with a new cerium phosphate inhibitor for smart corrosion protection of steel, Corrosion Science, 159, 108128 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108128