• 제목/요약/키워드: Energy Conversion Efficiency

검색결과 1,218건 처리시간 0.034초

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

A Study on the Mode Conversion of Control in the Single Phase Switched Reluctance Motor (단상 SRM의 제어 모드 변환에 관한 연구)

  • Go, Sung-Chul;Ahn, Joon-Seon;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.635-636
    • /
    • 2006
  • A pulse with modulation(PWM) that keeps a constant angle of dwell and adjust duty ratio is a good method to control a speed of SRM. And a method of one pulse control is proper a operation on range of high speed in SRM for a good energy efficiency. Because PWM method is more safety than one pulse method, conversion of those is best choice according the speed range. So, some algorithm is need for smooth conversion of the mode of control. This paper presents a factor of conversion that proper the conversion of control mode between PWM and one pulse method This factor is from estimation of torque and proper at the variable range of conversion and show the better conversion characteristic than constant factor of conversion.

  • PDF

The Study on the Effects of Breakwater Energy Conversion System by Horizontal Plate Installation (수평판 설치에 따른 방파제형 파력 발전 시스템의 영향에 대한 연구)

  • Jung, Sung-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • 제38권1호
    • /
    • pp.39-44
    • /
    • 2014
  • Due to the oil price is increasing continuously, active researches on sources of renewable energy has been invigorated. Above all, ocean energy has high-usability because of ocean current has high density and large quantity compared to the wind energy. In this paper, efficiency enhancement of the wave power generation was described through horizontal plate installation at the break water wave power generation system that converts the ocean energy into electricity. The power-conversion efficiency can be improved by horizontal plate installation at existing system, but there has been insufficient studies domestically. The purpose of this paper is to analyze about the effects of the horizontal plate installation on the breakwater wave power generation system by wave basin experiment and to propose a position of horizontal plate installation.

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

  • Sun, Wenjin;Jin, Xiang;Zhang, Li;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.849-859
    • /
    • 2017
  • This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency $f_{r2n}$ and the second series resonant frequency $f_{r3n}$ are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio $L_n$ and the normalized load Q. And it requires a smaller $L_n$ and Q to provide a sufficient voltage gain $M_{max}$ at ($V_{o\_max}$, $P_{o\_max}$). However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.

A Study on the Performance of the Ring-type Impulse Turbine for Wave Energy Conversion (파력발전용 링타입 임펄스터어빈의 성능 해석)

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON;KIM KI-SUP
    • Journal of Ocean Engineering and Technology
    • /
    • 제20권1호
    • /
    • pp.20-25
    • /
    • 2006
  • This paper deals with the design and aerodynamic analysis of a so-called 'ring-type' impulse turbine for wave energy conversion. Numerical analysis was performed using the CFD cock, FLUENT. The main idea of the proposed turbine rotor was to minimize the adverse effect of tip clearance of the turbine blade; the design was borrowed from a ducted propeller with connected ring tip for special purpose marine vehicles. Results show that the efficiency increases up to $10\%$, depending on flaw coefficient, with the higher flaw coefficient yielding better efficiency. Decrease of input coefficient CA was the main reason for higher efficiency. Performance of ring-type rotor at various design parameters, as well as flaw conditions, was investigated, and the advantages and the disadvantages of the present impulse turbine were also discussed.

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄피막의 광 전기분해 특성에 대한 연구)

  • Park, Seong-Yong;Cho, Won-Il;Cho, Byung-Won;Lee, Eung-Cho;Yun, Kyung-Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제2권1호
    • /
    • pp.47-56
    • /
    • 1990
  • Pure titanium rods were oxidized by anodic oxidation, furnace oxidation and flame oxidation and used as a electrode in the photodecomposition of water. The maximum photoelectrochemical conversion efficiency(${\eta}$) was found for flame oxidized electrode ($1200^{\circ}C$ for 2 min in air), 0.8 %. Anodically oxidized electrodes have minimum photoelectrochemical conversion efficiencies, 0.3 %. Furnace oxidized electrode ($800^{\circ}C$ for 10min in air) has 0.5% phtoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The efficiency shows a parallelism with the presence of the metallic interstitial compound $TiO_{O+X}$(X < 0.33) at the metal-semiconductor interface, the thickness of the sub oxide layer and that of the external rutile scale.

  • PDF

Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells

  • Hwang, Kyung-Jun;Yoo, Seung-Joon;Jung, Sung-Hoon;Park, Dong-Won;Kim, Sun-Il;Lee, Jae-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.172-176
    • /
    • 2009
  • The nature and morphology of titanium dioxide films play a significant role in determining the overall efficiency of dye-sensitized solar cell (DSSCs). In this work, the preparation of nanostructured titania particles by sol-gel method (SG-$TiO_2$) and its characterization were investigated for the application of DSSCs. The samples were characterized by XRD, XPS, FE-SEM, BET and FT-IR analysis. The energy conversion efficiency of SG-$TiO_2$ was approximately 8.3 % under illumination with AM 1.5 (100 mW/$cm^2$) simulated sunlight. DSSCs made of SG-$TiO_2$ nanocrystalline films as photoanodes achieved better energy conversion efficiency compared to those prepared using commercially available Degussa P25.

Solar Power Generation System Using A Small-Sized Stirling Engine (소형 스털링 엔진을 이용한 태양열 발전 시스템)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제13권8호
    • /
    • pp.3339-3344
    • /
    • 2012
  • To evaluate solar energy conversion efficiency of a solar power generation system that consists of a dish-type solar receiver in the combination with a Stirling engine, a solar power generation system using a small-sized Stirling engine was developed in this study, and preliminary experiments were carried out. The total capital fee was around five hundred thousand Won, and the developed system was found to produce an electricity of 0.56 kWh corresponding to 10% in the energy conversion efficiency. The better design of the system is expected to improve the system efficiency, and the experimental data obtained in this study will be used for other various applications associated with solar power generation.

Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage (효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화)

  • Go, Hyunju;Park, Yiseul
    • Clean Technology
    • /
    • 제27권1호
    • /
    • pp.85-92
    • /
    • 2021
  • A solar water battery is a system that generates power using solar energy. It is a combination of photoelectrochemical cells and an energy storage system. It can simultaneously convert and store solar energy without additional external voltage. Solar water batteries consist of photoelectrodes, storage electrodes and counter electrodes, and their properties and combination are important for the performance and the efficiency of the system. In this study, we tried to find the effect that changing the components of solar water batteries has on its system. The effects of the counter electrode during discharge, the kinds of photoelectrode and storage electrode materials, and electrolytes on the solar energy conversion and storage capacitance were studied. The optimized composition (TiO2 : NaFe-PB : Pt foil) exhibited 72.393 mAh g-1 of discharge capacity after 15 h of photocharging. It indicates that the efficiency of solar energy conversion and storage is largely affected by the configuration of the system. Also, the addition of organic pollutants to the chamber of the photoelectrode improved the battery's photo-current and discharge capacity by efficient photoelectron-hole pair separation with simultaneous degradation of organic pollutants. Solar water batteries are a new eco-friendly solar energy conversion and storage system that does not require additional external voltages. It is also expected to be used for water treatment that utilizes solar energy.