• Title/Summary/Keyword: Energy Convergence Efficiency

Search Result 437, Processing Time 0.03 seconds

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis (분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구)

  • Kim, Ingyeom;Nah, In Wook;Park, Sehkyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.854-862
    • /
    • 2016
  • As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.

Photoelectrochemical Properties of Gallium Nitride (GaN) Photoelectrode Using Cobalt-phosphate (Co-pi) as Oxygen Evolution Catalyst (산소발생용 Cobalt-phosphate (Co-pi) 촉매를 이용한 Gallium Nitride (GaN) 광전극의 광전기화학적 특성)

  • Seong, Chaewon;Bae, Hyojung;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • In the photoelectrochemical (PEC) water splitting, GaN is one of the most promising photoanode materials due to high stability in electrolytes and adjustable energy band position. However, the application of GaN is limited because of low efficiency. To improve solar to hydrogen conversion efficiency, we introduce a Cobalt Phosphate (Co-pi) catalyst by photo-electrodeposition. The Co-pi deposition GaN were characterized by SEM, EDS, and XPS, respectively, which illustrated that Co-pi was successfully decorated on the surface of GaN. PEC measurement showed that photocurrent density of GaN was 0.5 mA/㎠ and that of Co-pi deposited GaN was 0.75 mA/㎠. Impedance and Mott-Schottky measurements were performed, and as a result of the measurement, polarization resistance (Rp) and increased donor concentration (ND) values decreased from 50.35 Ω to 34.16 Ω were confirmed. As a result of analyzing the surface components before and after the water decomposition, it was confirmed that the Co-pi catalyst is stable because Co-pi remains even after the water decomposition. Through this, it was confirmed that Co-pi is effective as a catalyst for improving GaN efficiency, and when applied as a catalyst to other photoelectrodes, it is considered that the efficiency of the PEC system can be improved.

CO2/CH4 Separation in Metal-organic Frameworks: Flexibility or Open Metal Sites? (금속-유기 골격체를 이용한 CO2/CH4 분리: 플렉서블 효과와 강한 흡착 사이트 비교 연구)

  • Jung, Minji;Oh, Hyunchul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.136-141
    • /
    • 2018
  • Carbon dioxide ($CO_2$) exists not only as a component of natural gas, biogas, and landfill gas, but also as a major combustion product of fossil fuels which leads to a major contributor to greenhouse gases. Hence it is essential to reduce or eliminate carbon dioxide ($CO_2$) in order to obtain high fuel efficiency of internal combustion engine, to prevent corrosion of gas transportation system, and to cope with climate change preemptively. In recent years, there has been a growing interest in not only conventional membrane-based separation but also new adsorbent-based separation technology. Particularly, in the case of metal-organic frameworks (MOFs), it has been received tremendous attentions due to its unique properties (eg : flexibility, gate effect or strong binding site such as open metal sites) which are different from those of typical porous adsorbents. Therefore, in this study, stereotype of two MOFs have been selected as its flexible MOFs (MIL-53) representative and numerous open metal sites MOFs (MOF-74) representative, and compared each other for $CO_2/CH_4$ separation performance. Furthermore, varying and changeable separation performance conditions depending on the temperature, pressure or samples' unique properties are discussed.

Performance Analysis of Peer Aware Communications with CSMA/CA Based on Overhearing (Overhearing을 적용한 CSMA/CA 기반 대상인식통신 성능 분석)

  • Lee, Jewon;Ahn, Jae Min;Lee, Keunhyung;Park, Tae-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.251-259
    • /
    • 2014
  • In this paper, we propose Low Energy Service Discovery (LESD) protocol for common discovery mode of IEEE 802.15.8 Peer Aware Communications (PAC). In order to minimize power consumption, Basic Repetition Block (BRB) is defined. Device is able to select operating mode and synchronize other devices through it. Proposed MAC procedure is Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based on overhearing technique. Even if device has not been received response signal since transmitted request signal, it is able to discover other devices of same group through the overhearing technique. IEEE 802.15.8 PAC has required that performances of common discovery mode are presented about discovered devices during the simulation time, discovery latency and average power consumption. By considering the number of devices per group and channel environment, two scenarios are evaluated through system level simulation and the simulation results of proposed scheme are compared with CSMA/CA in same simulation conditions. As a result, proposed scheme is able to get high energy efficiency of devices as well as increase the number of discovered devices during simulation time when the longer the number of devices is distributed over a limited area.

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures (상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가)

  • Do Hyoung Kang;Kwanho Jeong;Yudam Jeong;Seung Hyun Song;Seunghee Lee;Sang Yong Nam;Jae-Kyung Jang;Euntae Yang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.352-361
    • /
    • 2023
  • Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.

Design and Performance Evaluation of Digital Twin Prototype Based on Biomass Plant (바이오매스 플랜트기반 디지털트윈 프로토타입 설계 및 성능 평가)

  • Chae-Young Lim;Chae-Eun Yeo;Seong-Yool Ahn;Myung-Ok Lee;Ho-Jin Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.935-940
    • /
    • 2023
  • Digital-twin technology is emerging as an innovative solution for all industries, including manufacturing and production lines. Therefore, this paper optimizes all the energy used in a biomass plant based on unused resources. We will then implement a digital-twin prototype for biomass plants and evaluate its performance in order to improve the efficiency of plant operations. The proposed digital-twin prototype applies a standard communication platform between the framework and the gateway and is implemented to enable real-time collaboration. and, define the message sequence between the client server and the gateway. Therefore, an interface is implemented to enable communication with the host server. In order to verify the performance of the proposed prototype, we set up a virtual environment to collect data from the server and perform a data collection evaluation. As a result, it was confirmed that the proposed framework can contribute to energy optimization and improvement of operational efficiency when applied to biomass plants.

Preparationand Characterization of Rutile-anatase Hybrid TiO2 Thin Film by Hydrothermal Synthesis

  • Kwon, Soon Jin;Song, Hoon Sub;Im, Hyo Been;Nam, Jung Eun;Kang, Jin Kyu;Hwang, Taek Sung;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • Nanoporous $TiO_2$ films are commonly used as working electrodes in dye-sensitized solar cells (DSSCs). So far, there have been attempts to synthesize films with various $TiO_2$ nanostructures to increase the power-conversion efficiency. In this work, vertically aligned rutile $TiO_2$ nanorods were grown on fluorinated tin oxide (FTO) glass by hydrothermal synthesis, followed by deposition of an anatase $TiO_2$ film. This new method of anatase $TiO_2$ growth avoided the use of a seed layer that is usually required in hydrothermal synthesis of $TiO_2$ electrodes. The dense anatase $TiO_2$ layer was designed to behave as the electron-generating layer, while the less dense rutile nanorods acted as electron-transfer pathwaysto the FTO glass. In order to facilitate the electron transfer, the rutile phase nanorods were treated with a $TiCl_4$ solution so that the nanorods were coated with the anatase $TiO_2$ film after heat treatment. Compared to the electrode consisting of only rutile $TiO_2$, the power-conversion efficiency of the rutile-anatase hybrid $TiO_2$ electrode was found to be much higher. The total thickness of the rutile-anatase hybrid $TiO_2$ structures were around $4.5-5.0{\mu}m$, and the highest power efficiency of the cell assembled with the structured $TiO_2$ electrode was around 3.94%.

A Study on the Calculation of GHG Emission for Domestic Railroad Transport based on IPCC Guideline (IPCC 가이드라인을 이용한 국내 철도수송에 따른 온실가스 배출량 산정에 관한 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Kyu;Rhee, Young-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.408-412
    • /
    • 2012
  • Recently, new climate change mechanism after 2020 year has been accepted with the parties, and so government is pushing ahead the GHG reduction policies to achieve the effective results. Especially, it is essential to enhance the role of railroad in the public traffic system as well as to develop new cars with high energy efficiency for the GHG reduction of transportation sector. Thus, the calculation method of GHG emission of railroad should be established to manage the emission continuously. In this study, the calculation method of GHG emission of railroad was defined with Tier level considering its emission sources to refer to 2006 IPCC guideline for national GHG inventories. Also, the GHG emission of railroad at Tier 1 level was investigated using the activity data related to the amount of diesel and electricity consumption from 2008 to 2010. As a result, total GHG emission in 2010 was about 2,060 thousands ton CO2e, which have 73% of electricity and 27% of diesel. In future, the plans on the GHG reduction of railroad will be accomplished by the analysis of the detailed trends on the basis of the emission management of Tier 3 level under operating patterns. Therefore, it is important to develop the specific GHG emission factors of railroad in advance.

Evaluation of Drying Performances by Hydrothermal Reaction of Sewage Sludge and Food wastes (하수슬러지 및 음식물류폐기물의 수열반응에 의한 건조 효율 평가)

  • Shin, Myung-Seop;Lee, Hyung-Don;Jeon, Yong-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.47-55
    • /
    • 2017
  • The technology for hydrothermal reaction of organic waste is one of the promising process to improve energy efficiency of biomass waste recycling system since moisture contents of treated biomass could be reduced at 40% or less than by dehydration processes. For these reasons, many parts of the world are interested in hydrothermal reaction of organic waste. In this paper, drying performances were evaluated with and without hydrothermal reaction of organic wastes which are sewage sludge and food wastes. For the hydrothermal reaction, organic wastes were treated at $200^{\circ}C$ for 1hr. Drying time of treated organic waste by hydrothermal reaction was reduced. In case of food waste drying at $100^{\circ}C$, drying time of treated wasted was reduced more 52.9% than non-treated. Hence, drying performances of sewage sludge and food wastes should be improved by hydrothermal reaction. Drying rates of treated wastes were considerably increased at preheat period of drying characteristic curve as followings; at $80^{\circ}C$ sludge as 148%, $100^{\circ}C$ sewage sludge as 151%, $80^{\circ}C$ food waste as 209%, $100^{\circ}C$ food waste as 366%. It means the surface area of treated wastes could be increased with destruction of cell membrane by hydrothermal reaction. However, the designer and operator of drying process should be careful, since enhanced drying rate cause the extension the decreasing drying period.

Influence of Internal and External Factors on the Inventory Turnover Change Rate (기업 내부적 및 외부적 요인이 재고자산회전율 변화율에 미치는 영향)

  • Seo, Yeong-Bok;Park, Chan-Kwon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.94-108
    • /
    • 2021
  • This study is to identify the internal and external factors of a company that can affect the rate of change in the inventory turnover ratio. In addition, by appropriately managing or responding to these factors, changes in the inventory turnover ratio do not occur abruptly, so that the company's business and financial performance can be improved. To confirm this, factors such as gross profit margin, cash flow volatility, advertising expenses, inflation, exchange rate rise, and leading economic index were selected, and these factors were predicted to affect the change rate of inventory turnover. Data of 85,878 companies were obtained from domestic securities listings, KOSDAQ listings, and externally audited companies, and multiple regression analysis was performed using the data. Gross profit margin and cash flow volatility have a significant positive (+) effect, advertising expenses have a negative (-) significant effect, and inflation and exchange rate rises have a negative (-) significant effect. As an influence, the leading economic index was tested to have a significant positive (+) effect. Through this, it is suggested that manufacturing companies can improve their business performance and achieve operational efficiency by well understanding and appropriately managing factors that can affect the change rate of inventory turnover.