Browse > Article
http://dx.doi.org/10.9713/kcer.2016.54.6.854

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis  

Kim, Ingyeom (Department of Chemical Engineering, Kwangwoon University)
Nah, In Wook (Center for Energy Convergence, Korea Institute of Science & Technology)
Park, Sehkyu (Department of Chemical Engineering, Kwangwoon University)
Publication Information
Korean Chemical Engineering Research / v.54, no.6, 2016 , pp. 854-862 More about this Journal
Abstract
As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.
Keywords
Hydrogen production; Oxygen evolution reaction; $Co_3O_4$; Ultrasonic spray pyrolysis;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Krol, R. V. D., Liang, Y. and Schoonman, J., "Solar Hydrogen Production with Nanostructured Metal Oxides," J. Mater. Chem., 18, 2311-2320(2008).   DOI
2 Artero, V., Kerlidou, M. C. and Fontecave, M., "Splitting Water with Cobalt," Angew. Chem. Int. Ed., 50, 7238-7266(2011).   DOI
3 Seabold, J. A. and Choi, K. S., "Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a $WO_3$ Photoanode," Chem, Mater., 23(5), 1105-1112(2011).   DOI
4 Lee, Y. M., Suntivich, J., May, K. J., Perry, E. E. and Horn, Y. S., "Synthesis and Activities of Rutile $IrO_2$ and $RuO_2$ Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions," J. Phys. Chem. Lett., 3, 399-404(2012).   DOI
5 Bhosale, R. R., Kumar, A., Broeke, L. J. V., Gharbia, S., Dardor, D., Jilani, M., Folady, J., Fakih, M. S. A. and Tarsad, M. A., "Solar Hydrogen Production Via Thermochemical Iron Oxide-iron Sulfate Water Splitting Cycle," Int. J. Hydrogen Energy, 40(4), 1639-1650 (2015).   DOI
6 Gokon, N., Murayama, H., Nagasaki, A. and Kodama, T., "Thermochemical Two-step Water Splitting Cycles by Monoclinic $ZrO_2$-Supported $NiFe_2O_4$ and $Fe_3O_4$ Powders and Ceramic Foam Devices," Solar Energy, 83(4), 527-537(2009).   DOI
7 Lee, S. H., Yu, S. H., Lee, J. E., Jin, A. H., Lee, D. J., Lee, N. H., Jo, H. G., Shin, K. S., Ahn, T. Y., Kim, Y. W., Choe, H. M., Sung, Y. E. and Hyeon, T. H., "Self-Assembled $Fe_3O_4$ Nanoparticle Clusters as High-Performance Anode for Lithium Ion Batteries via Geometric Confinement," Nano Lett., 13(9), 4249-4256(2013).   DOI
8 Zhang, J. H., Feng, J. Y., Zhu, T., Liu, Z. L., Li, Q. Y., Chen, S. Z. and Xu, C. W., "Pd-doped Urchin-like $MnO_2$-carbon Sphere Three-dimensional (3D) Material for Oxygen Evolution Reaction," Electrochimica Acta, 196(1), 661-669(2016).   DOI
9 Wang, X., Zheng, Y., Yuan, J., Shen, J., Wang, A. J., Niu, L. and Huang, S., "Uniform Deposition of $Co_3O_4$ Nanosheets on Exfoliated $MoS_2$ Nanosheets as Advanced Catalysts for Water Splitting," Electrochimica Acta, 212(10), 890-897(2016).   DOI
10 Xie, K., Masa, J., Madej, E., Yang, F., Weide, P., Dong, W., Muhler, M., Schuhmann, W. and Xia, W., "$Co_3O_4-MnO_2-CNT$ Hybrids Synthesized by HNO3 Vapor Oxidation of Catalytically Grown CNTs as OER," ChemCatChem, 7, 3027-3035(2015).   DOI
11 Rosen, J., Hutchings, G. S. and Jiao, F., "Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst," J. Am. Chem. Soc., 135(11), 4516-4521(2013).   DOI
12 Li, L., Tian, T., Jiang, J. and Ai, L., "Hierarchically Porous $Co_3O_4$ Architectures with Honeycomb-like Structures for Efficient Oxygen Generation from Electrochemical Water Splitting," J. Power Sources, 294(30), 103-111(2015).   DOI
13 Hou, Y., Li, J., Wen, Z., Cui, S., Yuan, C. and Chen, J., "$Co_3O_4$ Nanoparticles Embedded in Nitrogen-doped Porous Carbon Dodecahedrons with Enhanced Electrochemical Properties for Lithium Storage and Water Splitting," Nano Energy, 12, 1-8(2015).   DOI
14 Chen, S., Zhao, Y., Sun, B., Ao, Z., Xie, X., Wei, Y. and Wang, G., "Microwave-assisted Synthesis of Mesoporous $Co_3O_4$ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions," ACS Appl. Mater. Interfaces, 7, 3306-3313 (2015).   DOI
15 Ryu, W. H., Yoon, T. H., Song, S. H., Jeon, S. W., Park, Y. J. and Kim, I. D., "Bifunctional Composite Catalysts Using $Co_3O_4$ Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for High-Capacity and Long-Cycle $Li-O_2$ Batteries," Nano Lett., 13(9), 4190-4197(2013).   DOI
16 Lu, X. and Zhao, C., "Highly Efficient and Robust Oxygen Evolution Catalysts Achieved by Anchoring Nanocrystalline Cobalt Oxides Onto Mildly Oxidized Multiwalled Carbon Nanotubes," J. Mater. Chem. A, 1, 12053-12059(2013).   DOI
17 Solmaz, R. and Kardas, G., "Electrochemical Deposition and Characterization of NiFe Coatings as Electrocatalytic Materials for Alkaline Water Electrolysis," Electrochimica Acta, 54(14), 3726-3734(2009).   DOI
18 Chen, R., Wang, H, Y., Miao, J., Yang, H. and Liu, B., "A Flexible High-performance Oxygen Evolution Electrode with Three-dimensional $NiCo_2O_4$ Core-shell Nanowires," Nano Energy, 11, 333-340(2015).   DOI
19 Kibria, A. K. M. F. and Tarafdar, S. A., "Electrochemical Studies of a Nickel-copper Electrode for the Oxygen Evolution Reaction (OER)," Int. J. Hydrogen Energy, 27(9), 879-884(2002).   DOI
20 Prabu, M., Ketpang, K. and Shanmugam, S., "Hierarchical Nanostructured $NiCo_2O_4$ as An Efficient Bifunctional Non-precious Metal Catalyst for Rechargeable Zinc-air Batteries," Nanoscale, 6, 3173-3181(2014).   DOI
21 Pan, L., Li, L., Tian, D., Li, C. and Wang, J., "Synthesis of $Co_3O_4$ Nanomaterials with Different Morphologies and Their Photocatalytic Performances," JOM, 66(6), 1035-1042(2014).   DOI
22 Liu, I., Li, L., Patterson, N. A. and Manthiram, A., "Morphological Transformations during In Situ Electrochemical Generation of 2- Dimensional $Co_3O_4$ Hexagonal Nanoplates," J. Electrochem. Soc., 163(2), A150-A155(2016).   DOI
23 Castro, E. B. and Gervasi, C. A., "Electrodeposited Ni-Co-oxide Electrodes: Characterization and Kinetics of the Oxygen Evolution Reaction," Int. J. Hydrogen Energy, 25, 1163-1170(2000).   DOI
24 Shi, N., Cheng, W., Zhou, H., Fan, T. and Niederberger, M., "Facile Synthesis of Monodisperse $Co_3O_4$ Quantum Dots with Efficient Oxygen Evolution Activity," Chem. Commun., 51, 1338-1340(2015).   DOI
25 Ko, Y. N. and Kang, Y. C., "Characteristics of Ag-doped $BaTiO_3$ Nanopowders Prepared by Spray Pyrolysis," Ceram. Int., 38, 2071-2077(2012).   DOI
26 Wang, J., Liu, W., Chen, J., Wang, H., Liu, S. and Chen, S., "Biotemplated MnO/C Microtubes from Spirogyra with Improved Electrochemical Performance for Lithium-ion Batterys," Electrochimica Acta, 188, 210-217(2016).   DOI
27 Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T. and Tilley, T. D., "Size-Dependent Activity of $Co_3O_4$ Nanoparticle Anodes for Alkaline Water Electrolysis," J. Phys. Chem. C, 113, 15068-15072(2009).   DOI
28 Yao, L., Zhong, H., Deng, C. W., Li, X. F. and Zhang, H. M., "Template-assisted Synthesis of Hierarchically Porous $Co_3O_4$ with Enhanced Oxygen Evolution Activity," J. Energy Chem., 25, 153-157(2016).   DOI
29 Park, G. D., Cho, J. S. and Kang, Y. C., "Novel Cobalt Oxide-nanobubble-decorated Reduced Graphene Oxide Sphere with Superior Electrochemical Properties Prepared by Nanoscale Kirkendall Diffusion Process," Nano Energy, 17, 17-26(2015).   DOI
30 Tian, G. L., Zhao, M. Q., Yu, D., Kong, X. Y., Huang, J. Q., Zhang, Q. and Wei, F., "Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction," Small, 10, 2251-2259(2014).   DOI
31 Gao, M. R., Cao, X., Gao Q., Xu, Y. F., Zheng, Y. R., Jiang, J. and Yu, S. H., "Nitrogen-Doped Graphene Supported $CoSe_2$ Nanobelt Composite Catalyst for Efficient Water Oxidation," ACS Nano, 8, 3970-3978(2014).   DOI
32 http://www.h2journal.com/displaynews.
33 Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N. and Markovic, N. M., "Trends in Electrocatalysis on Extended and Nanoscale Pt-bimetallic Alloy Surfaces," Nat. Mater., 6, 241-247(2007).   DOI
34 Jeong, J. H., Shin, E. K., Jeong, J. J., Na, I. C., Chu, C. H. and Park, K. P., "Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis," Korean Chem. Eng. Res., 52(6), 695-700(2014).   DOI
35 Yoo, S. J., Jeon, T. Y. and Sung, Y. E., "Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Feul Cell," J. Korean Electrochem. Soc., 12(1), 11-25(2009).   DOI
36 Lee, J. Y., Yi, Y. M. and Uhm, S. H., "Understanding Uunderlying Process of Water Electrolysis," J. Korea Ind. Eng. Chem., 19(4), 357-365(2008).
37 Blakemore, J. D., Gray, H. B., Winkler, J. R. and Muller, A. M., "$Co_3O_4$ Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids," ACS Catal., 3, 2497-2500(2013).   DOI
38 Koza, J. A., He, Z., Miller, A. S., Switzer, J. A., "Electrodeposition of Crystalline $Co_3O_4$-A Catalyst for the Oxygen Evolution Reaction," Chem. Mater., 24(18), 3567-3573(2012).   DOI
39 Sun, C., Rajasekhara, S., Chen, Y. and Goodenough, J. B., "Facile Synthesis of Monodisperse Porous $Co_3O_4$ Microspheres with Superior Ethanol Sensing Properties," Chem. Commun., 47, 12852-12854(2011).   DOI
40 Bahlawane, N., FischerRivera, E., Hoinghaus, K. K. and Brechling, A., "Characterization and Tests of Planar $Co_3O_4$ Model Catalysts Prepared by Chemical Vapor Deposition," Appl. Catal. B, 53, 245-255(2004).   DOI
41 Buyukyazi, M., Hegemann, C., Lehnen, T., Tyrra, W. and Mathur, S., "Molecular Co(II) and Co(III) Heteroarylalkenolates as Efficient Precursors for Chemical Vapor Deposition of $Co_3O_4$ Nanowires," Inorg. Chem., 53(20), 10928-10936(2014).   DOI
42 Barrera, C. E., Flores, J. C. M., Gonzalez, G. F., Lopez, M. O. and Rosas, R. C., "Spectroscopic Ellipsometry Study of $Co_3O_4$ Thin Films Deposited on Several Metal Substrates," The Open Surface Science Journal, 5, 9-16(2013).   DOI
43 Won, J. M., Kim, J. H., Choi, Y. J., Cho, J. S. and Kang, Y. C., "Design and Synthesis of Metal Oxide Hollow Nanopowders for Lithium-ion Batteries by Combining Nanoscale Kirkendall Diffusion and Flame Spray Pyrolysis," Ceram. Int., 42, 5461-5471 (2016).   DOI
44 Ko, Y. N., Choi, S. H. and Kang, Y. C., "Nano-sized $Ag-BaTiO_3$ Composite Powders with Various Amount of Ag Prepared by Spray Pyrolysis," J. Eur. Ceram. Soc., 33(7), 1335-1341(2013).   DOI
45 Kim, J. W., Sim, K. S., Kim, J. D., Han, S. D. and Jung, K. D, "Thermochemical Cycles for Hydrogen Production from Water," J. Korean Hydrogen Energy Society, 12(1), 11-21(2001).
46 Chen, S., Duan, J., Jaroniec, M. and Qiao, S. Z., "Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction," Adv. Mater., 26, 2925-2930(2014).   DOI
47 Gao, M. R., Xu, Y. F., Jiang, J., Zheng, Y. R. and Yu, S. H., "Water Oxidation Electrocatalyzed by an Efficient $Mn_3O_4/CoSe_2$ Nanocomposite," J. Am. Chem. Soc., 134, 2930-2933(2012).   DOI
48 Park, Y. B., Lim, H. K., Woo, H. C., "Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae," Korean Chem. Eng. Res., 54(1), 94-100(2016).   DOI
49 Shin, J. S., Cho, S. J., Choi, S. H., Qasim, F., Lee, H. N., Park, J. H., Lee, W. J., Lee, E. S. and Park, S. J., "A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production," Korean Chem. Eng. Res., 52(4), 459-466(2014).   DOI
50 Kim, D. J., Han, G. B., Park, N. K., Lee, T. J. and Kang, M. S., "Hydrogen Production from Splitting of Methanol/Water Solution Using Perovskite Structured $Nb_xSrTi_{1-x}O_3$ Photocatalysts," Korean Chem. Eng. Res., 51(4), 513-517(2013).   DOI
51 Yoon, D. J. and Koh, J. H., "A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant," Trans. of the Korean Hydrogen and New Energy Society, 20(5), 416-423(2009).
52 Choi, H. S., Yim, D. S., Rhyu, C. H., Kim, J. C. and Hwang, G. J., "Study on the Electrode Characteristics for the Alkaline Water Electrolysis," Trans. of the Korean Hydrogen and New Energy Society, 23(2), 117-124(2012).   DOI
53 이택홍., "수전해 장치 기술 개요 및 전망", Journal of Electrical world monthly magazine, 459, 14-17(2015).
54 Chemelewski, W. D., Lee, H. C., Lin, J. F., Bard, A. J. and Mullins, C. B., "Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting," J. Am. Chem. Soc., 136(7), 2843-2850(2014).   DOI
55 Santos, D. M. F., Sequeira, C. A. C. and Figueiredo, J. L., "Hydrogen Production by Alkaline Water Electrolysis," Quim. Nova, 36(8), 1176-1193(2013).   DOI