• 제목/요약/키워드: Energy Convergence Efficiency

Search Result 437, Processing Time 0.027 seconds

Implementation of Incoming Panel Monitoring System using Open Source Platform and Wi-Fi Networks (오픈소스 플랫폼 및 Wi-Fi를 이용한 수배전반 모니터링 시스템 구현)

  • Kang, Jin-Young;Kang, Hag-Seong;Jeong, Sung-Hak;Park, Mi-Young;Lee, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.886-887
    • /
    • 2015
  • There is a growing interest in and demand for power industry acceleration and energy efficiency due to the increased energy consumption, environmental issues. Electronic power IT convergence industries such as intelligent power system has attract attention as new growth engine industry. A large number of sensors and motors are being installed following unmanned, automated in existing incoming panel management system. Observe the operating conditions and rapid response is essential. Despite the need for immediate action to be taken in the event of various later failed to recognize the emergency power can lead to accidents. In this paper, we propose a new architecture of the implementation of incoming panel monitoring system for power monitoring, fault detection, maintenance and system control using open source hardware platform and Wi-Fi networks.

  • PDF

A novel approach to the form-finding of membrane structures using dynamic relaxation method

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Gholami, Hossein;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.123-141
    • /
    • 2017
  • Solving a system of linear or non-linear equations is required to analyze any kind of structures. There are many ways to solve a system of equations, and they can be classified as implicit and explicit techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation method (DR) is one of the powerful and simple explicit processes. The important point is that the DR does not require to store the global stiffness matrix, for which it just uses the residual loads vector. In this paper, a new approach to the DR method is expressed. In this approach, the damping, mass and time steps are similar to those of the traditional method of dynamic relaxation. The difference of this proposed method is focused on the method of calculating the damping. The proposed method is expressed such that the time step is constant, damping is equal to zero except in steps with maximum energy and the concentrated damping can be applied to minimize the energy of system in this step. In this condition, the calculation of damping in all steps is not required. Then the volume of computation is reduced. The DR method for form-finding of membrane structures is employed in this paper. The form-finding of the three plans related to the membrane structures with different loading is considered to investigate the efficiency of the proposed method. The numerical results show that the convergence rate based on the proposed method increases in all cases than other methods.

Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator

  • Mishra, Kaushik;Panda, Subrata K.;Kumar, Vikash;Dewangan, Hukum Chand
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.391-401
    • /
    • 2020
  • The present article reports the feasibility of the electrical energy generation from ambient low-frequency vibration using a piezoelectric material mounted on a bimorph cantilever beam actuator. A corresponding higher-order analytical model is developed using MATLAB in conjunction with finite element method under low-frequency with both damped and undamped conditions. An alternate model is also developed to check the material and dimensional viability of both piezoelectric materials (mainly focussed to PVDF and PZT) and the base material. Also, Genetic Algorithm is implemented to find the optimum dimensions which can produce the higher values of voltage at low-frequency frequencies (≤ 100 Hz). The delamination constraints are employed to avoid inter-laminar stresses and to increase the fracture toughness. The delamination has been done using a Teflon sheet sandwiched in between base plates and the piezo material is stuck to the base plate using adhesives. The analytical model is tested for both homogenous and isotropic material characteristics of the base material and extended to investigate the effect of the different geometrical parameters (base plate dimensions, piezo layer dimensions and placement, delamination thickness and placement, excitation frequency) on the model responses of the bimorph cantilever beam. It has been observed that when the base material characteristics are homogenous, the efficiency of the model remains higher when compared to the condition when it is of isotropic material. The necessary convergence behaviour of the current numerical model has been established and checked for the accuracy by comparing with available published results. Finally, using the results obtained from the model, a prototype is fabricated for the experimental validation via a suitable circuit considering Glass fibre and Aluminium as the bimorph material.

Intelligent Emergency Alarm System based on Multimedia IoT for Smart City

  • Kim, Shin;Yoon, Kyoungro
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2019
  • These-days technology related to IoT (Internet of Thing) is widely used and there are many types of smart system based IoT like smart health, smart building and so on. In smart health system, it is possible to check someone's health by analyzing data from wearable IoT device like smart watch. Smart building system aims to collect data from sensor such as humidity, temperature, human counter like that and control the building for energy efficiency, security, safety and so forth. Furthermore, smart city system can comprise several smart systems like smart building, smart health, smart mobility, smart energy and etc. In this paper, we propose multimedia IoT based intelligent emergency alarm system for smart city. In existing IoT based smart system, it communicates lightweight data like text data. In the past, due to network's limitations lightweight IoT protocol was proposed for communicating data between things but now network technology develops, problem which is to communicate heavy data is solving. The proposed system obtains video from IP cameras/CCTVs, analyses the video by exploiting AI algorithm for detecting emergencies and prevents them which cause damage or death. If emergency is detected, the proposed system sends warning message that emergency may occur to people or agencies. We built prototype of the intelligent emergency alarm system based on MQTT and assured that the system detected dangerous situation and sent alarm messages. From the test results, it is expected that the system can prevent damages of people, nature and save human life from emergency.

A Research on the Empowerment Plan for Specialists in RI-Biomics Field (RI-Biomics 분야의 실무전문가 역량강화 방안연구)

  • Shin, Woo-Ho;Park, Tai-Jin;Park, Sang-Hyun;Yeom, Yu-sun
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.161-168
    • /
    • 2014
  • Increasing utilization of radiation and RI (Radioisotope) in nuclear industry including non-power area has achieved sustainable development of radiation industry. Industries are no longer confined by a single technology or abilities but expanded for application gradually. RI-Biomics fields are one of the convergence technology that is recognized on a high-tech industry. Unlike the conventional industry, RI-Biomics field needs to various specialists to perform related task. There is no domestic training program to educate the whole process. This study aims to suggest the plan for improvement of practical skills for specialists in RI-Biomics through development of our training program. For this purpose, we have first investigated the opinion about classification scheme from experts and then analyzed the results in order to reflecting our training program. Based on analyzed results, conformity assessment was executed to organize curriculum through status of constructed device and instructor in domestic. Our training program was performed jointly with KAERI (Korea Atomic Energy Research Institute). RI-Biomics center is prepared with facilities of overall experiment to improve quality of education. Due to the fact that specialists have routine task, we organized a five-day short course to reflect temporal difficulties. We performed a trial operation to 6 participants in RI-Biomics field. Through the survey for the specialists who participated in the program, we evaluated the efficiency of our training program. The results showed that participants were satisfied with the organized curriculum and educational materials. Therefore, our program is expected to be utilized as basic research data to develop feasible program for policy development and to improve practical skills in RI-Biomics.

An Efficient Game Theory-Based Power Control Algorithm for D2D Communication in 5G Networks

  • Saif, Abdu;Noordin, Kamarul Ariffin bin;Dimyati, Kaharudin;Shah, Nor Shahida Mohd;Al-Gumaei, Yousef Ali;Abdullah, Qazwan;Alezabi, Kamal Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2631-2649
    • /
    • 2021
  • Device-to-Device (D2D) communication is one of the enabling technologies for 5G networks that support proximity-based service (ProSe) for wireless network communications. This paper proposes a power control algorithm based on the Nash equilibrium and game theory to eliminate the interference between the cellular user device and D2D links. This leadsto reliable connectivity with minimal power consumption in wireless communication. The power control in D2D is modeled as a non-cooperative game. Each device is allowed to independently select and transmit its power to maximize (or minimize) user utility. The aim is to guide user devices to converge with the Nash equilibrium by establishing connectivity with network resources. The proposed algorithm with pricing factors is used for power consumption and reduces overall interference of D2Ds communication. The proposed algorithm is evaluated in terms of the energy efficiency of the average power consumption, the number of D2D communication, and the number of iterations. Besides, the algorithm has a relatively fast convergence with the Nash Equilibrium rate. It guarantees that the user devices can achieve their required Quality of Service (QoS) by adjusting the residual cost coefficient and residual energy factor. Simulation results show that the power control shows a significant reduction in power consumption that has been achieved by approximately 20% compared with algorithms in [11].

Development of Artificial Intelligence Model for Outlet Temperature of Vaporizer (기화 설비의 토출 온도 예측을 위한 인공지능 모델 개발)

  • Lee, Sang-Hyun;Cho, Gi-Jung;Shin, Jong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2021
  • Ambient Air Vaporizer (AAV) is an essential facility in the process of generating natural gas that uses air in the atmosphere as a medium for heat exchange to vaporize liquid natural gas into gas-state gas. AAV is more economical and eco-friendly in that it uses less energy compared to the previously used Submerged vaporizer (SMV) and Open-rack vaporizer (ORV). However, AAV is not often applied to actual processes because it is heavily affected by external environments such as atmospheric temperature and humidity. With insufficient operational experience and facility operations that rely on the intuition of the operator, the actual operation of AAV is very inefficient. To address these challenges, this paper proposes an artificial intelligence-based model that can intelligent AAV operations based on operational big data. The proposed artificial intelligence model is used deep neural networks, and the superiority of the artificial intelligence model is verified through multiple regression analysis and comparison. In this paper, the proposed model simulates based on data collected from real-world processes and compared to existing data, showing a 48.8% decrease in power usage compared to previous data. The techniques proposed in this paper can be used to improve the energy efficiency of the current natural gas generation process, and can be applied to other processes in the future.

Stochastic Mobility Model Design in Mobile WSN (WSN 노드 이동 환경에서 stochastic 모델 설계)

  • Yun, Dai Yeol;Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1082-1087
    • /
    • 2021
  • In MANET(mobile ad hoc network), Mobility models vary according to the application-specific goals. The most widely used Random WayPoint Mobility Model(RWPMM) is advantageous because it is simple and easy to implement, but the random characteristic of nodes' movement is not enough to express the mobile characteristics of the entire sensor nodes' movements. The random mobility model is insufficient to express the inherent movement characteristics of the entire sensor nodes' movements. In the proposed Stochastic mobility model, To express the overall nodes movement characteristics of the network, the moving nodes are treated as random variables having a specific probability distribution characteristic. The proposed Stochastic mobility model is more stable and energy-efficient than the existing random mobility model applies to the routing protocol to ensure improved performances in terms of energy efficiency.

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.

A Plan for Establishing IOT-based Building Maintenance Platform (S-LCC): Focusing a Concept Model on the Function Configuration and Practical Use of Measurement Data (IOT 기반 건축물 유지관리 플랫폼 구축(S-LCC) 방안 : 기능구성과 계측 데이터 활용을 위한 개념 모델을 중심으로)

  • Park, Tae-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.611-618
    • /
    • 2020
  • The reliability of the results of LCC analysis is determined by accurate analytical procedures and energy data from which the uncertainty is removed. Until now, systems that can automatically measure these energy data and produce databases have not been commercialized. Therefore this paper proposes a concept model of an S-LCC platform that can automatically collect and analyze electric energy consumption data of equipment systems using the IOT, which is the core tool in the Fourth Industrial Revolution and operates the equipment system efficiently using the analyzed results. The proposed concept model was developed by the convergence of existing BLCS and IOT and was comprised of five modules: Facility Control Module, LCC Analysis Module, Energy Consumption Control Module, Efficiency Analysis Module, and Maintenance Standard Reestablishment Module. Using the results of LCC analysis deduced from this system, the deterioration condition of an equipment system can be identified in real-time. The results can be used as the baseline data to re-establish standards for the maintenance factor, replacement frequency, and lifetime of existing equipment, and establish new maintenance standards for new equipment. If the S-LCC platform is established, it would increase the reliability of LCC analysis, reduce the labor force for entering data and improve accuracy, and would also change disregarded data into big data with high potential.