• Title/Summary/Keyword: Energy Consumption Reduction

Search Result 778, Processing Time 0.032 seconds

A Locality-Aware Write Filter Cache for Energy Reduction of STTRAM-Based L1 Data Cache

  • Kong, Joonho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.80-90
    • /
    • 2016
  • Thanks to superior leakage energy efficiency compared to SRAM cells, STTRAM cells are considered as a promising alternative for a memory element in on-chip caches. However, the main disadvantage of STTRAM cells is high write energy and latency. In this paper, we propose a low-cost write filter (WF) cache which resides between the load/store queue and STTRAM-based L1 data cache. To maximize efficiency of the WF cache, the line allocation and access policies are optimized for reducing energy consumption of STTRAM-based L1 data cache. By efficiently filtering the write operations in the STTRAM-based L1 data cache, our proposed WF cache reduces energy consumption of the STTRAM-based L1 data cache by up to 43.0% compared to the case without the WF cache. In addition, thanks to the fast hit latency of the WF cache, it slightly improves performance by 0.2%.

Visible Light Communication Method for Personalized and Localized Building Energy Management

  • Jeong, Jin-Doo;Lim, Sang-Kyu;Han, Jinsoo;Park, Wan-Ki;Lee, Il-Woo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.735-745
    • /
    • 2016
  • The Paris agreement at the 21st Conference of the Parties (COP21) emphasizes the reduction of greenhouse gas emissions and increase in energy consumption in all areas. Thus, an important aspect is energy saving in buildings where the lighting is a major component of the electrical energy consumption. This paper proposes a building energy management system employing visible light communication (VLC) based on LED lighting. The proposed management system has key characteristics including personalization and localization by utilizing such VLC advantages as secure communication through light and location-information transmission. Considering the efficient implementation of an energy-consumption adjustment using LED luminaires, this paper adopts variable pulse position modulation (VPPM) as a VLC modulation scheme with simple controllability of the dimming level that is capable of providing a full dimming range. This paper analyzes the VPPM performances according to variable dimming for several schemes, and proposes a VPPM demodulation architecture based on dimming-factor acquisition, which can obtain an improved performance compared to a 2PPM-based scheme. In addition, the effect of a dimming-factor acquisition error is analyzed, and a frame format for minimizing this error effect is proposed.

The Energy Performance & Economy Efficiency Evaluation of Microturbine Installed in Hospital buildings (대형병원에서 마이크로터빈 이용한 열병합시스템 에너지성능 및 경제성 분석)

  • Kim, Byung-Soo;Gil, Young-Wok;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.176-183
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat, and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30[%] after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40[%]. If electricity energy and waste heat in turbine are used, 56[%] of heating energy and 67[%] of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70[%].

Decomposition Analysis of Energy Consumption and GHG Emissions by Industry Classification for Korea's GHG Reduction Targets (감축목표 업종 분류체계에 따른 산업부문의 에너지 소비 및 온실가스 배출 요인 분해 분석)

  • Park, Nyun-Bae;Shim, SungHee
    • Environmental and Resource Economics Review
    • /
    • v.24 no.1
    • /
    • pp.189-224
    • /
    • 2015
  • To meet sectoral emission target by 2020 and prepare for the emission trading scheme from 2015, decomposition analysis of energy consumption and GHG emission is required by 18 subsectors in industry sector where emission targets are established. Log Mean Divisia Index decomposition method was used to analyze factors' effects on energy and emission in the industry sector and by 18 subsectors from 2004 to 2011. Industrial energy consumption was increased due to the production effect and energy intensity effect. However structure effect contributes to the decrease of energy consumption. In terms of emissions (including indirect emission due to electricity consumption) in the industry sector, only structure effect contributed to the emission reduction. Factors' effects by subsectors were different. Cement industry, which is included at Nonmetal shows different results from those of Nonmetal industry and machinery industry, which is a subsector of Fabricated Metal, was also similar. In this regard, we should not apply the policy implications from decomposition analysis of aggregated industry such as Nonmetal or Fabricated Metal to its subsectors uniformly and develop a differentiated policy for each subsector industry.

Optimization of Microbial Electrosynthesis Using Rhodobacter sphaeroides for CO2 Upcycling (CO2 고부가화를 위한 로도박터 스페로이데스를 활용한 미생물 전기합성 최적화 연구)

  • Hui Su Kim;Hwi Jong Jung;Danbee Kim;Samgmin Lee;Jiye Lee;Jin-Suk Lee;Myounghoon Moon;Chang Hyun Ko;Soo Youn Lee
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.20-26
    • /
    • 2023
  • Emitted CO2 is an attractive material for microbial electrochemical CO2 reduction. Microbial electrochemical CO2 reduction (i.e., microbial electrosynthesis, MES) using biocatalysts has advantages compared to conventional CO2 reduction using electrocatalysts. However, MES has several challenges, including electrode performance, biocatalysts, and reactor optimization. In this study, an MES system was investigated for optimizing reactor types, counter electrode materials, and CO2-converting microorganisms to achieve effective CO2 upcycling. In autotrophic cultivation (supplementation of CO2 and H2), CO2 consumption of Rhodobacter sphaeroides was observed to be four times higher than that with heterotrophic cultivation (supplementation of succinic acid). The bacterial growth in an MES reactor with a single-chambered shape was two times higher than that with a double chamber (H-type MES reactor). Moreover, a single-chambered MES reactor equipped with titanium mesh as the counter electrode (anode) showed markedly increased current density in the graphite felt as a working electrode (cathode) compared to that with a graphite felt counter electrode (anode). These results demonstrate that the optimized conditions of a single chamber and titanium mesh for the counter electrode have a positive effect on microbial electrochemical CO2 reduction.

Voltage Scaling for Multiprocessor Systems with Voltage Translation Energy Overhead (전압변화에 의한 에너지 오버헤드를 고려하는 멀티프로세서 시스템을 위한 전압 조절 기법)

  • Hong, Hye-Jeong;Kim, Hyun-Jin;Kang, Sung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.431-432
    • /
    • 2008
  • We propose a DVS technique for multiprocessor systems considering the energy consumed when translating voltage. We schedule periodic applications on two identical processors throughout a three-stage process; firstly, the computation energy consumption is minimized then the number of voltage translations is minimized. Finally, the result is compared with the schedule with no voltage translation and the one with smaller energy consumption is chosen. Overall, 10.6% energy reduction was achieved.

  • PDF

Evaluation of Liquid Pressure Amplifier Technology

  • Reindl Douglas T.;Hong Hiki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.119-127
    • /
    • 2005
  • Liquid pressure amplifiers have been proposed as an energy saving technology for vapor compression refrigeration systems configured with direct-expansion evaporators. The technology utilizes a refrigerant pump in the high pressure liquid line as a means of maintaining a suitable pressure differential across the expansion valve while lowering condensing pressure to achieve the reduction of compressor energy consumption. Applications have been proposed on systems ranging from small unitary air-conditioning to large supermarket and commercial refrigeration systems. This paper clarifies the role of such a device in a vapor compression refrigeration system. Limitations are presented and discussed. Finally, results of detailed analyses are presented to quantify the energy consumption both with and without a liquid pressure amplifier in a unitary air conditioning system. The estimated energy savings associated with the installation of a liquid pressure amplifier are minimal.

A Experimental Study on the Application of GRNN for On-Off Control in Floor Radiant Heating System (바닥복사 난방시스템의 개폐식 제어에 대한 GRNN 적용에 관한 실험적 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.16-23
    • /
    • 2020
  • In this study, the control characteristics and effects of control methods on heating performance and energy consumption for the hot water floor radiant heating control system of a residential apartment were research by experiment. As a control method, On-Off control and outdoor reset control methods with GRNN(General Regression Neural Network) and without GRNN are considered. Also, the control performances with regard to improvement of indoor thermal environment and reduction of energy consumption are compared, respectively. Experiment results show that the performance of the control method with GRNN is better than that of conventional on-off control method without GRNN in the responses of room set temperature and energy saving.

Power-Minimizing DVFS Algorithm Using Estimation of Video Frame Decoding Complexity (영상 프레임 디코딩 복잡도 예측을 통한 DVFS 전력감소 방식)

  • Ahn, Heejune;Jeong, Seungho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.46-53
    • /
    • 2013
  • Recently, intensive research has been performed for reducing video decoder energy consumption, especially based on DVFS (Dynamic Voltage and Frequency Scaling) technique. Our previous work [1] has proposed the optimal DVFS algorithm for energy reduction in video decoders. In spite of the mathematical optimality of the algorithm, the precondition of known frame decoding cycle/complexity limits its application to some realistic scenarios. This paper overcomes this limitation by frame data size-based estimation of frame decoding complexity. The proposed decoding complexity estimation method shows over 90% accuracy. And with this estimation method and buffer underflow margin of around 20% of frame size, almost same power consumption reduction performance as the optimal algorithm can be achieved.

A Study on Carbon Incentive System Based on Investigation of Energy Consumption in Korean Universities (대학 캠퍼스의 에너지 소비 실태 조사를 통한 탄소 인센티브 제도 연구)

  • Kim, Kyung-Su;Shin, Moon-Su;Koo, Ja-Kon
    • Hwankyungkyoyuk
    • /
    • v.23 no.2
    • /
    • pp.65-81
    • /
    • 2010
  • Universities which have taken an important role to develop the human resources, became one of emitters of greenhouse gases, they need to find a way to reduce global warming gases through reduction of energy consumption. This study is intented to propose a solution that can reduce the greenhouse gases at universities located in Korea. To conduct this study, we have chosen a university at Wonju in Kangwon province for a case study and investigated the emissions of carbon dioxide from campus facilities and residential area. The data has become a footstone to estimate the assumed amount of carbon emission for top 23 energy consumption universities in Korea. We calculate the amount for carbon emission, not only for facilities in campus, but also for residential buildings, amount for emission is increased severely by showing $9780.94tCO_2$, which is 2.1 times more than average amount for emission of greenhouse gases researched in existing statistics. Universities have difficulty in introducing new energy generation system, as having been done business companies or other commercial facilities but they are required to introduce some educational methods since it is a academic space. Incentive to universities reducing carbon emission in campus is a system to provide incentives with students, professors, administrative personnels and others in campus as a compensation for their efforts to save energy. It is needed to establish the infrastructures for measuring energy consumption in campus.

  • PDF