
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 ISSN(Print) 1598-1657
http://dx.doi.org/10.5573/JSTS.2016.16.1.080 ISSN(Online) 2233-4866

Manuscript received Jul. 26, 2015; accepted Nov. 2, 2015
Joonho Kong is with the School of Electronics Engineering, Kyungpook
National University
E-mail : joonho.kong@knu.ac.kr

A Locality-Aware Write Filter Cache for Energy
Reduction of STTRAM-Based L1 Data Cache

Joonho Kong

Abstract—Thanks to superior leakage energy
efficiency compared to SRAM cells, STTRAM cells
are considered as a promising alternative for a
memory element in on-chip caches. However, the
main disadvantage of STTRAM cells is high write
energy and latency. In this paper, we propose a low-
cost write filter (WF) cache which resides between the
load/store queue and STTRAM-based L1 data cache.
To maximize efficiency of the WF cache, the line
allocation and access policies are optimized for
reducing energy consumption of STTRAM-based L1
data cache. By efficiently filtering the write
operations in the STTRAM-based L1 data cache, our
proposed WF cache reduces energy consumption of
the STTRAM-based L1 data cache by up to 43.0%
compared to the case without the WF cache. In
addition, thanks to the fast hit latency of the WF
cache, it slightly improves performance by 0.2%.

Index Terms—Spin torque transfer random access
memory, filter cache, energy efficiency, performance,
L1 data cache

I. INTRODUCTION

The advent of new memory cells has been providing a
new opportunity for computer architecture design. Spin
torque transfer random access memory (STTRAM) cells
are one of the promising memory cells which can
potentially replace SRAM cells. They have significantly

lower leakage energy consumption and smaller cell size
with comparable (or less) read access energy and latency
compared to the conventional 6T SRAM cells. Due to
their better leakage energy efficiency, there have been
many proposals to use STTRAM cells for on-chip caches
[1-7]. However, the main disadvantages of STTRAM
cells are high write energy and latency. Particularly, a
long write latency of STTRAM cells may lead to a
severe performance loss in the case of L1 caches where
accesses to the cache occur very frequently. Thus, the
employment of STTRAM cells for on-chip caches have
been explored mainly for large-scale L2 or last-level
caches where write operations occur sporadically. In this
case, a long latency of write operations can be
sufficiently hidden by write buffers or queues as most of
the write operations will be filtered by L1 caches.

On the other hand, write energy and latency of
STTRAM cells can be optimized by adjusting the
retention time of the cells [7, 8]. It enables a deployment
of the STTRAM cells in L1 caches [8, 9] as it can reduce
write latency as well as write energy of the STTRAM
cells. Though write energy and latency of the optimized
STTRAM cells are still higher than those of 6T SRAM
cells, thanks to the lower read access energy and leakage
power, energy consumption of the STTRAM-based L1
caches can be reduced by up to 40% with a negligible
performance loss [8] compared to that of the SRAM-
based L1 caches. However, a portion of write dynamic
energy consumption of STTRAM-based L1 caches is still
significant (~45%), which means there is a considerable
room for energy optimization in STTRAM-based L1
caches.

In the case of L1 instruction caches, they do not have
store operations and write energy is only consumed when

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 81

a cache line is filled into the cache. Hence, just
employing the optimized STTRAM cells to the L1
instruction cache without any further optimization would
nearly yield an optimal energy consumption. However, in
the case of L1 data caches, a situation is totally different
because of the store operations. Since L1 data caches are
accessed nearly every cycle due to superscalar and out-
of-order executions, store operations frequently occur in
the L1 data caches. Consequently, it leads to huge write
dynamic energy consumption in STTRAM-based L1 data
caches.

For energy reduction in STTRAM-based L1 data
caches, we propose a locality-aware write filter (WF)
cache which resides between the processor core’s
load/store queue (LSQ) and L1 data cache. It primarily
filters write accesses (as well as read) to the L1 caches,
reducing the energy consumption of the STTRAM-based
L1 data cache. Moreover, thanks to fast hit latency of WF
cache, it brings a little performance benefit. The main
architecture of our WF cache is similar to the
conventional filter caches [10, 11]. However, we use
novel WF cache allocation and access policies optimized
for STTRAM-based L1 data caches.

The rest of this paper is organized as follows. Section
2 presents our motivational study which advocates a need
for write dynamic energy optimization in STTRAM-
based L1 data caches. Section 3 describes our proposed
write filter cache architecture with new line allocation
and access policies. Section 4 describes our evaluation
results. Section 5 briefly skims recent literature regarding
STTRAM-based on-chip cache designs and filter cache
designs. Lastly, Section 6 concludes this paper.

II. MOTIVATION

STTRAM cells typically have lower (or comparable)
read access latency and energy, and significantly less
leakage power consumption compared to the
conventional 6T SRAM cells. However, an immediate
deployment of STTRAM cells for on-chip caches may
have energy and performance inefficiency due to their
high write dynamic energy consumption and latency. In
order to mitigate those demerits, one can optimize write
energy and latency of the STTRAM cells by reducing
retention time of the cells [7, 8]. The shorter retention
time the STTRAM cells have, the lower write energy and
latency they tend to have.

A study in [8] shows a considerable energy reduction
of the L1 cache by employing the optimized STTRAM
cells that have a shorter retention time. By paying
periodic refresh energy, it can reduce write dynamic
energy in the STTRAM-based L1 cache. It sufficiently
advocates the use of STTRAM cells in the L1 caches in
addition to the large-scale L2 or L3 caches. However,
write dynamic energy consumption in STTRAM-based
L1 data cache is still significant even though the L1 data
caches adopt the optimized STTRAM cells (which have
reduced write energy and shorter retention time). As
shown in Fig. 1 even with the optimized STTRAM cells,
write dynamic energy consumption occupies 45% in
energy consumption of the STTRAM-based L1 data
cache, on average. It means there is still a significant
room for optimizing write energy consumption in
STTRAM-based L1 data caches.

In L1 data caches, there are two categories that cause

Fig. 1. An energy breakdown of STTRAM-based L1 data cache. The simulation framework and energy parameters are presented in
Section 4.

82 JOONHO KONG : A LOCALITY-AWARE WRITE FILTER CACHE FOR ENERGY REDUCTION OF STTRAM-BASED L1 DATA …

write dynamic energy consumption: data store and block
fill. Data store operations occur when the processor core
executes store instructions while block fills occur when
there is a L1 data cache miss. Since the miss rates in L1
data caches are typically very low (~5%) in general
programs, most of the write energy consumption comes
from the data store operations issued from the load-store
queue (LSQ). Therefore, energy reduction in data store
operations is a critical factor for energy optimization in
STTRAM-based L1 data caches.

III. WRITE FILTER CACHE DESIGN

1. Architecture

To minimize store operations to the L1 data cache, we

propose to use a small write filter (WF) cache between
the load-store queue (LSQ) and L1 data cache as
depicted in Fig. 2. The main architecture for our WF
cache is similar to the ones previously proposed [10, 11].
These techniques are mainly for performance
improvement and energy reduction by exploiting the fast
hit latency and low access energy of the filter cache.
However, the main purpose of our filter cache is to filter
write (store) operations to the L1 data cache which
eventually leads to a huge write energy reduction in the
STTRAM-based L1 data cache. Thus, our WF cache has
different filter cache allocation and access policies
(which will be explained in Sections 3.2 and 3.3) with
the hardware architecture similar to the conventional
filter caches.

Our WF cache is composed of the conventional 6T
SRAM cells as it should have fast access time and low
read/write dynamic energy. The associativity of the WF
cache is fully-associative and the replacement policy is
least recently used (LRU). The line size of the WF cache

is 64 Byte (same as the L1 data cache line size in our
evaluation). For design simplicity, the WF cache has a
strict inclusion property with the L1 data cache. Hence,
when the cache line in the L1 data cache is evicted, the
corresponding line in the WF cache is also evicted. In
this paper, we use 4-entry and 8-entry configurations for
the WF cache size. The higher number of entries will
increase a hit rate of the WF cache while it also increases
dynamic and leakage energy overhead from the WF
cache.

In the chip multi-processor architecture with write-
through caches, there is a write buffer to hide write
latency. However, the typical write buffer resides
between L1 and L2 cache while the WF cache is between
the LSQ and L1 cache. Thus, our WF cache can be used
along with the write buffers.

To support cache coherence, the snooping messages
must be sent to the other core’s L1 data cache whenever
the store operation is done in either WF cache or L1 data
cache. In order to address this case, as shown in Fig. 2,
snooping messages are sent from the WF cache or L1
data cache. When a store hit occurs in the WF cache, the
state of the corresponding shared cache line is changed to
modified state and an invalidation message is sent to the
other cores. The updated data is written in the WF cache
and also goes to the write buffer for L2 cache update in
the case of write-through cache. In this case, the data is
not updated in the L1 data cache. Note that the data
update in the L1 cache occurs when the dirty line is
evicted from the WF cache. For MESI cache coherence
protocol, two-bit storage per cache line in the WF cache
is required for maintaining the coherency status. Since
our WF cache has only small number of entries (~8), the
area overhead for this storage is negligible.

When the cache invalidation signal comes from the
other cores, the cache line in both WF cache and L1 data
cache must be invalidated. To support this, the
invalidation signal is also sent to the WF cache and the
corresponding cache line is invalidated if there is a cache
line that corresponds to the address designated in the
invalidation message. To eliminate a latency overhead
due to the tag-lookup during the cache snooping, we can
have duplicate copy of the tags in WF caches. Since the
tag size of the WF cache entry is small (42-bit per entry
when using 48-bit physical address), the area overhead is
very small.

Processor core

LSQ STTRAM-based
L1 data cacheWF cache

snooping messages
to the other cores

snooping messages
from the other cores

Duplicated
tag storage

Fig. 2. The overall architecture.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 83

2. WF cache Line Allocation Policy

The line allocation policy of the WF cache plays a key

role for reducing write dynamic energy consumption in
STTRAM-based L1 data caches. In this paper, we
propose two different line allocation policies for the WF
cache: WF_RD and WF_WR. The WF_RD policy is
similar to the allocation policy of Hit Cache [10]. The
WF_RD policy does not allocate the cache line to the WF
cache along with the block (line) fill in the L1 data cache
(i.e., when there is a cache miss). When the read (load)
hit occurs after the line fill in the L1 data cache, then the
corresponding cache line is allocated to the WF cache.
The main advantage of the WF_RD policy is that it can
filter both consecutive read and write accesses to the L1
data cache when there is a high read/write temporal
locality. Since the WF cache hit latency is smaller than
the L1 data cache hit latency, it would also lead to better
performance. However, the main disadvantage of the
WF_RD policy is that the WF cache is mostly used for
filtering read operations in the L1 data cache. Recall that
typical programs tend to execute more number of load
instructions than store instructions. It implies the
WF_RD policy incurs frequent line replacements in the
WF cache, potentially resulting in more evictions of the
cache lines that have high temporal locality on write
operations. Because filtering write operations is a critical
factor for STTRAM-based L1 data cache energy
reduction, the WF_RD policy may lead to suboptimal
energy reduction in the L1 data cache.

The other policy (WF_WR) allocates the cache line to
the WF cache when the cache write (store) hit occurs in
the L1 data cache. The WF_WR policy operates as a
prefetching mechanism for the cache line which will be
written (by store instructions) in the near future. With the
WF_WR policy, the WF cache tends to have a lower
replacement rate than the WF_RD, which in turn leads to
fewer evictions of the cache lines that have a high
temporal locality on write operations. Hence, the
WF_WR can filter the write operations better than the
WF_RD policy.

The conventional filter caches (i.e., L0 caches)
allocates the cache line in the filter caches whenever
there is a cache miss in the filter cache. It implies a new
cache line is always allocated in both L1 cache and filter
cache when there is a cache miss in the L1 cache. In

contrast, our new line allocation policy adopts a lazy
allocation of the cache lines in the WF cache. The
rationale behind this decision is that too frequent cache
line replacement between the WF cache and L1 data
cache would result in more evictions of the cache line
that will be accessed (particularly for store operations) in
the near future. To summarize, Table 1 describes the
cases when the line allocation in the WF cache occurs
across various allocation policies.

As in the general write-back cache, a dirty line
eviction from the WF cache incurs a cache line update
(write operation) in the L1 data cache for data coherence.
In the case of the clean line eviction, it can be silently
evicted (i.e., no write operation in the L1 data cache)
since we enforce the strict inclusion property between the
WF cache and L1 data cache.

3. WF Cache Access Policy

Fig. 3 shows the line access policy and required clock

cycles of the WF cache. The WF cache is always
accessed first before accessing the L1 data cache. In the
case of data load hit in the WF cache, the data is served
within 1 cycle. Similar to the case of data load, data store
hit in the WF cache also takes 1 cycle for the data to be
updated in the WF cache. In the case of WF cache misses,
it takes different clock cycles for load and store since the
STTRAM cells have a longer write latency than the read.
In our configuration, the read operation takes 2 cycles for
an L1 data cache access while it takes 4 cycles for a write
operation [8]. Thus, in the case of WF cache miss and L1
data cache hit, it takes total 3 cycles and 5 cycles for load
and store, respectively.

4. WF Cache Line Allocation and Write-Back Overhead

Along with the access latency overhead of the WF
cache, there are line allocation and write-back latency
overhead. However, the line allocation to the WF cache

Table 1. Line allocation policies in the WF cache and the
conventional filter cache (FC) [11]

 Cache miss Cache load hit Cache store hit
WF_RD X O O
WF_WR X X O

FC O O O

84 JOONHO KONG : A LOCALITY-AWARE WRITE FILTER CACHE FOR ENERGY REDUCTION OF STTRAM-BASED L1 DATA …

does not need to stall the processor pipeline since the
required data for load instructions can be directly
forwarded from the L1 data cache to the LSQ regardless
of the WF cache line allocation. In the case of write-back
from the WF cache to the L1 data cache, it takes 4 cycles
to update the L1 data cache. It can be done in the
background and does not make the CPU core be stalled.
However, when the CPU core accesses the cache line
which are currently written (by write-back from the WF
cache or line-fill from the L2 cache), the cache access
cycle is increased by the remaining cycles for the
completion of write operations in L1 data cache. We
carefully modeled these overheads in our evaluation to
obtain an accurate simulation results. Since long physical
distance between the WF cache and L1 data cache would
result in additional latency overhead for line allocation
and write-back. To minimize data transfer latency
overhead, the WF cache designer should carefully
determine the distance between the WF cache and the L1
data cache as close as possible. Careful P&R (place &

route) process during the processor design would result
in negligible data transfer latency overhead.

5. Analytical Performance Model for WF Cache

In this subsection, we demonstrate an analytical

performance model for our WF cache. To estimate
memory-side performance, we use AMAT (average
memory access time) for performance metric. Based on
the model shown in [12], we extend the analytical model
to describe AMAT when there is filter cache between the
LSQ and L1 data cache.

The conventional (i.e., without filter cache) AMAT
with two-level cache hierarchy can be calculated as
follows:

AMATconv = HRL1D * HLL1D + MRL1D * (HRL2 * HLL2 +

 MRL2 * LMEM.) (1)

The explanations of abbreviations in Eqs. (1-3) are

shown in Table 2. For extension of this model to cover
filter cache (i.e., L0 cache), we add terms for filter
caches as follows:

 AMAT = HRFC * HLFC + MRFC * AMATconv (2)

For STTRAM-based L1 data caches, the read and

write latency will be different. To reflect this impact, the
HLL1D can be calculated as follows:

 HLL1D = RatioLD * RLL1D + RatioST * WLL1D (3)

(a) in the case of load

(b) in the case of store

Fig. 3. The WF cache access policy.

Table 2. The meaning of abbreviations used in Eqs. (1-3)

Abbre. Meaning
HRL1D L1 data cache hit rate
HLL1D L1 data cache hit latency
MRL1D L1 data cache miss rate
HRL2 L2 cache hit rate
HLL2 L2 cache hit latency
MRL2 L2 cache miss rate
LMEM Main memory access latency
HRFC Filter cache hit rate
HLFC Filter cache hit latency
MRFC Filter cache miss rate

RatioLD The ratio between hit load instructions and hit memory
access instructions (load+store)

RatioST
The ratio between hit store instructions and hit

memory access instructions (load+store)
RLL1D L1 data cache read latency
WLL1D L1 data cache write latency

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 85

Since full performance simulation often takes huge
time, our simple analytical performance model can
reduce the development cycle of STTRAM-based L1
cache with filter caches. Please note that the simulation
statistics shown in Table 2 can easily be collected via fast
cache-only simulation tools (e.g., DINERO [13]).

IV. EVALUATION

For energy evaluations, we use an SRAM and
STTRAM energy parameters from [8]. For STTRAM-
based L1 data caches, we assume that the cell
configuration from [8] (denoted as ‘lo2’ in [8]) is used.
For program-dependent energy evaluations, cache access
traces and counts (for both WF and L1 data caches) are
extracted from M-SIM [14] which is originated from
SimpleScalar [15] architectural simulator. We evaluate
performance in terms of IPC (instruction per clock cycle)
which is also extracted from M-SIM. The micro-
architectural parameters in our M-SIM simulator are
tuned for ARM Cortex-A15 [16] as close as possible.
The L1 data cache configuration is 4-way set associative
32 KB cache with LRU replacement policy and line size
is 64 B. Table 3 summarizes the parameters of SRAM
and STTRAM-based L1 data caches for energy and
performance evaluations.

We also take the filter cache energy consumption into
consideration. In this paper, we show two different
configurations for the filter cache size: 4-entry (SR_E4,
ST_E4, ST_WF_WR_E4 and ST_WR_RD_E4) and 8-
entry (SR_E8, ST_E8, ST_WF_WR_E8 and
ST_WR_RD_E8). Table 4 summarizes energy and
latency parameters for the filter (as well as WF) cache
which are derived from CACTI [17]. Please note that
energy evaluation results shown in Section 4.1 already
include the filter cache energy consumption except for

the case of not using filter caches (SR and ST
configurations).

For comparison with the prior art, we also show the
energy and performance results of the conventional filter
cache. The SR_E4, SR_E8, ST_E4, and ST_E8
correspond to the case where SRAM-based L1 cache
with the 4 and 8-entry conventional filter cache and
STTRAM-based L1 cache with 4 and 8-entry
conventional filter cache, respectively. To summarize
various configurations, Table 5 shows the various
configurations and their abbreviations for conciseness.

We run selected 16 programs from SPEC2006
benchmark suite. We fast-forward 2 billion instructions
and actually run 1 billion instructions for energy and
performance evaluations. We assume the clock frequency
of the processor as 2 GHz.

1. Energy

Fig. 4 shows normalized L1 data cache energy

consumption results across various configurations.
Compared to SRAM-based L1 data cache, STTRAM-
based L1 data cache (ST configuration in Fig. 4) reduces
energy consumption by 58% on average due to low read
access energy and leakage energy of STTRAM cells.

Table 3. Energy and latency parameters (45 nm process node)
for SRAM- and STTRAM-based L1 data cache [8]

 SRAM-based STTRAM-based (‘lo2’ in
[8])

Read energy (nJ) 0.075 0.035
Write energy (nJ) 0.059 0.187

Leakage power (mW) 57.7 1.98
Read latency (cycle) 3 2
Write latency (cycle) 3 4
Retention time (us) - 26.5

Table 4. The filter cache energy and latency parameters (45 nm
process node) derived from CACTI [17].

 *_E4 *_E8
Access energy (nJ) 0.003890 0.004683

Leakage power (uW) 21.6 26.6
Read latency (cycle) 1 1
Write latency (cycle) 1 1

Table 5. Various configurations compared in Sections 4.1 and
4.2. The difference between the FC, WF_RD, and WF_WR is
explained in Table 1

Configurations Meaning
SR SRAM-based L1 data cache

SR_E4 SRAM-based L1 data cache + 4-entry FC
SR_E8 SRAM-based L1 data cache + 8-entry FC

ST STTRAM-based L1 data cache
ST_E4 STTRAM-based L1 data cache + 4-entry FC

ST_WF_RD_E4 STTRAM-based L1 data cache + 4-entry WF_RD
ST_WF_WR_E4 STTRAM-based L1 data cache + 4-entry WF_WR

ST_E8 STTRAM-based L1 data cache + 8-entry FC
ST_WF_RD_E8 STTRAM-based L1 data cache + 8-entry WF_RD
ST_WF_WR_E8 STTRAM-based L1 data cache + 8-entry WF_WR

86 JOONHO KONG : A LOCALITY-AWARE WRITE FILTER CACHE FOR ENERGY REDUCTION OF STTRAM-BASED L1 DATA …

However, with the WF cache, one can further reduce
STTRAM-based L1 data cache energy. The
ST_WF_RD_E8 configuration can reduce energy by
32% compared to the STTRAM configuration. In the
case of ST_WF_WR_E8, our WF cache reduces L1 data
cache energy by 43% compared to the STTRAM
configuration. The ST_WF_WR policies show more
energy reduction compared to the ST_WF_RD policies.
This is because of higher WF cache write hit rates with
the WF_WR policies than those with the WF_RD as
shown in Fig. 5. Though the ST_WF_RD policies show
far higher WF cache read hit rate, increasing WF cache
write hit rates contributes to energy reductions much
more than the WF cache read hit rates. In addition, a
larger number of the WF cache entries also contributes to
energy reductions as it yields higher WF cache hit rates
(for both read and write).

Our proposed policies (ST_WF_RD and ST_WF_WR),
which are geared towards STTRAM-based L1 data
caches, show better energy-efficiency compared to the
conventional filter cache (FC configurations). The
ST_WF_RD_E8 and ST_WF_WR_E8 policies show less
energy consumption by 6% and 21% (on average)
compared to the ST_E8. It means our ST_WF_RD and
ST_WF_WR policies are more suitable for STTRAM-
based L1 cache and filter cache.

As shown in Fig. 4, there are some programs which
can be regarded as outliers. In the case of CactusADM,
the ST_WF_WR_4E shows more energy consumption
than the ST configuration. This is because there is much
fewer number of store operations in CactusADM than the

other programs, meaning that there is less room for write
energy reduction (as already depicted in Fig. 1).
Consequently, the energy overhead from the WF cache
becomes more than the energy reduction from the L1
data cache. In the case of lbm, the ST_WF_WR policies
also incur more energy consumption than the STTRAM
configuration. The main reason for lbm is low write hit
rates (~0%) in the WF cache due to the low temporal
locality on store operations. In the case of hmmer, the
ST_WF_WR shows significant energy reduction while
the ST_WF_RD consumes more energy than the
STTRAM configuration. This is because the ST_WF_
WR shows much higher WF cache write hit rates (~96%
for both ST_WF_WR_4E and ST_WF_WR_8E) than
those in the case of the ST_WF_RD (only 22% and 40%
for ST_WF_RD_4E and ST_WF_RD_8E, respectively).

We also estimate the system-level energy consumption
by using McPAT 1.3 [18]. Fig. 6 shows the component-
level energy breakdown in dual-core ARM Cortex-A15
based system-on-a-chip (SOC). We also use 45nm
process node for the energy estimation. In the results
shown in Fig. 6, the SRAM-based L1 data cache is used.
Since L1 data cache consumes ~7% energy in the entire
SOC, our ST_WF_WR_E8 can reduce system-level
energy by 5.4% compared to the SR configuration.
Compared to the ST configuration, our ST_WF_WR_E8
configuration reduces system-level energy consumption
by 1.3%.

Though we do not compare energy results when using
the optimized STTRAM cells in the L1 data cache [8]
with ours, our WF cache will reduce energy consumption

Fig. 4. Normalized energy consumption across the various configurations. The results are normalized to the energy results when
using SRAM cells in the L1 data cache.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 87

of STTRAM-based L1 data cache regardless of which
type of optimized STTRAM cells is used in the L1 data
cache. This is because our WF cache is orthogonal to the
STTRAM cell optimization. We leave quantifying the
impact of STTRAM cells in the L1 data cache when
using the WF cache as our future work.

2. Performance

Fig. 7 shows performance evaluation results across

various configurations. As in Section 4.1, performance
results for each configuration are also normalized to
those for SRAM-based L1 data cache configuration. The
ST configuration shows almost identical performance
compared to the SR configuration. Though the ST has
higher write latency, lower read latency of STTRAM
cells offsets this latency overhead. When using the WF
caches, one can slightly improve performance by up to
0.2% (in the case of using ST_WF_RD_8E) compared to
the ST configuration since a WF cache hit enables faster
data access. Between the ST_WF_RD and ST_WF_WR,
the ST_WF_RD policies show slightly better
performance compared to the ST_WF_WR policies. This
is because ST_WF_RD yields much higher WF cache
read hit rates as shown in Fig. 5. Since the processor

pipeline is out-of-order issue and programs shown in Fig.
7 are not quite load/store-intensive (except for mcf),
performance improvement from the WF_RD policies is
marginal.

As an outlier, in the case of mcf, the ST_WF_RD
significantly improves performance by 25~27%
compared to the ST configuration while the ST_WF_WR
shows little performance benefit. For mcf, the WF_WR
only shows WF cache read hit rates of 24~29% while the
WF_RD shows those of 64~78%. The huge differences
in the WF cache read hit rates for mcf translate into the
performance difference between the ST_WF_RD and
ST_WF_WR.

Compared to the conventional filter cache (FC), our
proposed policies (WF_RD and WF_WR) show only a
small performance loss. Compared to ST_E8, the
ST_WF_RD_E8 and ST_WF_WR_E8 show only 0.5%
and 0.6% performance losses on average. Considering an
efficient trade-off between the energy and performance,
our ST_WF_RD and ST_WF_WR show much better
results thanks to the huge energy benefit.

3. Area Overhead

The area overhead of our WF cache is <5% of the

STTRAM-based L1 data cache area. As shown in Table
6, 4-entry WF cache area overhead is only 3.8%
compared to the STTRAM-based L1 data cache.
Compared to the SRAM-based L1 data cache, the area
overhead of the WF cache becomes ~1%. For multi-core
cache coherence, the WF cache requires duplicated tag
arrays as explained in Section 3.1. However, tag array
size in the cache is small (<10% of data array size). Thus,
even with the duplicated tag storage, one can
conservatively estimate that the WF cache area overhead
is under 5% of the entire STTRAM-based L1 data cache
area. Considering the L1 data cache occupies only a
small portion in the entire processor area, the area
overhead of the WF cache will be negligible compared to
the whole processor area.

Fig. 5. Average WF cache read and write hit rates.

Fig. 6. Energy breakdown in dual-core ARM Cortex-A15 based
system-on-a-chip (SOC) derived from McPAT [18].

Table 6. The WF cache area overhead

 vs. SRAM-based vs. STTRAM-based
ST_WF_*_4E 0.84% 3.77%
ST_WF_*_8E 1.00% 4.47%

88 JOONHO KONG : A LOCALITY-AWARE WRITE FILTER CACHE FOR ENERGY REDUCTION OF STTRAM-BASED L1 DATA …

V. RELATED WORK

Many proposals for STTRAM-based cache
architecture have been introduced. However, many of
those proposals focus on energy reduction in L2 or last-
level caches which exploit lower leakage power
consumption and smaller cell area of STTRAM cells
compared to SRAM cells [1-7]. Several proposals have
been introduced for STTRAM-based L1 caches. In [8],
STTRAM-based L1 and L2 cache architectures are
explored by using the write energy-optimized STTRAM
cells with shorter retention time. In [19], an SRAM-
STTRAM hybrid L1 cache design is introduced for
multi-core cache coherence. For refresh energy reduction
in STTRAM-based L1 caches, a ‘no refresh’ scheme was
proposed in [9]. A compiler-assisted STTRAM-based L1
cache architecture was also proposed in [20]. In [20], a
small loop cache is used to reduce energy consumption in
STTRAM-based L1 instruction caches. Unlike the
proposals introduced above, we exploit a small write
filter cache for STTRAM-based L1 data cache energy
reduction. As already demonstrated in Section 4, our
technique not only reduces L1 data cache energy but also
improves performance with small hardware cost.

For filter cache design, several different types of filter
cache or victim caches have been proposed. In [11], the
filter cache architecture was proposed for power
reduction and energy-delay product improvement.
Several studies have focused on reducing energy
consumption in L1 instruction caches. In [22], a different
type of filter cache was proposed to reduce processor’s

front-end power consumption. The authors of [22]
proposed decode filter cache that contains high-locality
decoded instructions. In [23] and [24], novel types of
filter cache architectures are explored for multi-core
processors and temperature management, respectively.
Different from the previous studies on filter cache
architecture, our work focuses on reducing energy of
STTRAM-based L1 data cache with new block allocation
policies: WF_RD and WF_WR.

VI. CONCLUSIONS

In this paper, we propose the WF cache that efficiently
filters write operations in the STTRAM-based L1 data
cache. We propose two different line allocation policies:
WF_RD and WF_WR. The WF_RD is geared towards
filtering both read and write operations in the L1 data
cache while the WF_WR is primarily for filtering write
operations. According to our evaluation results, our WF
cache (in the case of ST_WF_WR_E8) reduces energy
consumption of STTRAM-based L1 data cache by up to
43%. Furthermore, it slightly improves performance by
0.2% (in the case of ST_WF_RD_E8). We believe that
our WF cache can be a low-cost alternative that enables
energy- and area-efficient STTRAM-based L1 data cache.
As our future work, we are planning to extend our work
as follows:

1) we will develop an adaptive scheme which switches
between the WF_WR and WF_RD policies in runtime by
referring to the workload characteristics;

2) we will evaluate our WF cache with the adaptive

Fig. 7. Normalized performance (IPC) across the various configurations. The results are normalized to the performance results when
using SRAM cells in the L1 data cache.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 89

scheme in full system simulator with running operating
systems;

3) we will quantify energy and performance impact of
our WF cache with the adaptive scheme when using the
various STTRAM configurations as in [8].

ACKNOWLEDGMENTS

This research was supported by Samsung Electronics.

REFERENCES

[1] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan,
R. Iyer, and C. R. Das, “Cache Revive:
Architecting Volatile STT-RAM Caches for
Enhanced Performance in CMPs,” in Proceedings
of 2012 49th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2012, pp. 243–252.

[2] J. Ahn, S. Yoo, and K. Choi, “DASCA: Dead Write
Prediction Assisted STT-RAM Cache Architecture,”
in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA),
2014, pp. 25–36.

[3] Z. Wang, D. Jimenez, C. Xu, G. Sun, and Y. Xie,
“Adaptive Placement and Migration Policy for an
STT-RAM-based Hybrid Cache,” in 2014 IEEE
20th International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2014, pp.
13–24.

[4] Y.-T. Chen, J. Cong, H. Huang, C. Liu, R.
Prabhakar, and G. Reinman, “Static and Dynamic
Co-optimizations for Blocks Mapping in Hybrid
Caches,” in Proceedings of the 2012 ACM/IEEE
International Symposium on Low Power
Electronics and Design, 2012, pp. 237–242.

[5] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy
Reduction for STT-RAM Using Early Write
Termination,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD) - Digest of
Technical Papers, 2009., 2009, pp. 264–268.

[6] S. P. Park, S. Gupta, N. Mojumder, A.
Raghunathan, and K. Roy, “Future Cache Design
Using STT MRAMs for Improved Energy
Efficiency: Devices, Circuits and Architecture,” in
Proceedings of 2012 49th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2012, pp.

492–497.
[7] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi,

and M. Stan, “Relaxing Non-volatility for Fast
and Energy-efficient STT-RAM Caches,” in
Proceedings of 2011 IEEE 17th International
Symposium on High Performance Computer
Architecture (HPCA), Feb 2011, pp. 50–61.

[8] Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X.
Zhu, and W. Wu, “Multi Retention Level STT-
RAM Cache Designs with a Dynamic Refresh
Scheme,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, 2011, pp. 329–338.

[9] J. Yao, J. Ma, T. Chen, and T. Hu, “An Energy-
Efficient Scheme for STT-RAM L1 Cache,” in
Proceedings of 2013 IEEE International
Conference on Embedded and Ubiquitous
Computing, 2013, pp. 1345–1350.

[10] N. Duong, T. Kim, D. Zhao, and A. V.
Veidenbaum, “Revisiting Level-0 Caches in
Embedded Processors,” in Proceedings of the 2012
International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems,
2012, pp. 171–180.

[11] J. Kin, M. Gupta, and W. H. Mangione-Smith,
“The Filter Cache: An Energy Efficient Memory
Structure,” in Proceedings of the 30th Annual
ACM/IEEE International Symposium on Micro-
architecture, 1997, pp. 184–193.

[12] D. Patterson and J. Hennessy, “Computer
Architecture: A Quantitative Approach. 5th ed.,
Morgan Kaufmann; 2011.

[13] J. Edler and M. D. Hill, “Dinero IV Trace-Driven
Uniprocessor Cache Simulator”, [Online]. Available:
http://www.cs.wisc.edu/~markhill/DineroIV/.

[14] J. J. Sharkey, D. Ponomarev, and K. Ghose, “M-
Sim: A Flexible, Multithreaded Architectural
Simulation Environment,” in Technical Report CS-
TR-05-DP01, Department of Computer Science,
State University of New York at Binghamton, 2005.

[15] “SimpleScalar toolset.” [Online]. Available:
http://www.simplescalar.com

[16] “ARM Cortex-A15.” [Online]. Available: http://
www.arm.com/products/processors/cortex-a/cortex-
a15.php

[17] N. Muralimanohar and R. Balasubramonian,
“CACTI 6.0: A Tool to Model Large Caches.”

90 JOONHO KONG : A LOCALITY-AWARE WRITE FILTER CACHE FOR ENERGY REDUCTION OF STTRAM-BASED L1 DATA …

[18] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D.
M. Tullsen, and N. P. Jouppi, “McPAT: An
integrated power, area, and timing modeling
framework for multicore and manycore
architectures”, in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Micro-
architecture, 2009, pp. 469–480.

[19] J. Wang, Y. Tim, W.-F. Wong, Z.-L. Ong, Z. Sun,
H. H. Li, “A coherent hybrid SRAM and STT-
RAM L1 cache architecture for shared memory
multicores”. In Proceedings of 2014 19th Asia and
South Pacific Design Automation Conference
(ASP-DAC), 2014, pp. 610–615.

[20] Y. Li, Y. Zhang, H. LI, Y. Chen, and A. K. Jones,
“C1C: A Configurable, Compiler-guided STT-
RAM L1 Cache,” ACM Transactions on
Architecture and Code Optimization, vol. 10, no. 4,
pp. 52:1–52:22, 2013.

[21] J. Ahn and K. Choi, “LASIC: Loop-Aware Sleepy
Instruction Caches Based on STT-RAM
Technology,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 5,
pp. 1197–1201, 2014.

[22] W. Tang, R. K. Gupta, and A. Nicolau, “Power
Savings in Embedded Processors through Decode
Filer Cache”, in Proceedings of Design,
Automation and Test in Europe Conference and
Exhibition (DATE), pp. 443–448, 2002.

[23] Young Jin Park, Hong Jun Choi, Cheol Hong Kim,
and Jong-Myon Kim, “Energy-aware Filter Cache
Architecture for Multicore Processors”, in
Proceedings of Fifth IEEE International Sympo-
sium on Electronic Design, Test & Applications
(DELTA), pp. 58–62, 2010.

[24] Hong Jun Choi, Young Jin Park, Seung Gu Kang,
Cheol Hong Kim, Sung Woo Chung, Jong-Myon
Kim, and Dongseop Kwon, “Thermal-aware
Duplicated Filter Cache for Improving Processor
Reliability”, in Proceedings of the 2010
International Conference on Computer Design
(CDES), pp. 160–168, 2010.

Joonho Kong received the BS
degree in Computer Science from
Korea University, Seoul, Korea, in
2007. He received the MS and PhD
degrees in Computer Science and
Engineering from Korea University,
Seoul, Korea, in 2009 and 2011,

respectively. He also worked as a postdoctoral research
associate in the Department of Electrical and Computer
Engineering, Rice University. He is now an assistant
professor in the School of Electronics Engineering at
Kyungpook National University. His research interests
include computer architecture design, temperature-aware
microprocessor design, reliable microprocessor cache
design, and hardware security.

