• Title/Summary/Keyword: Energy Consumption Rate

Search Result 1,025, Processing Time 0.038 seconds

A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase (제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구)

  • Bae, Eun-ji;Yoon, Yong Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.

Fuzzy Logic based Admission Control for On-grid Energy Saving in Hybrid Energy Powered Cellular Networks

  • Wang, Heng;Tang, Chaowei;Zhao, Zhenzhen;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4724-4747
    • /
    • 2016
  • To efficiently reduce on-grid energy consumption, the admission control algorithm in the hybrid energy powered cellular network (HybE-Net) with base stations (BSs) powered by on-grid energy and solar energy is studied. In HybE-Net, the fluctuation of solar energy harvesting and energy consumption may result in the imbalance of solar energy utilization among BSs, i.e., some BSs may be surplus in solar energy, while others may maintain operation with on-grid energy supply. Obviously, it makes solar energy not completely useable, and on-grid energy cannot be reduced at capacity. Thus, how to control user admission to improve solar energy utilization and to reduce on-grid energy consumption is a great challenge. Motivated by this, we first model the energy flow behavior by using stochastic queue model, and dynamic energy characteristics are analyzed mathematically. Then, fuzzy logic based admission control algorithm is proposed, which comprehensively considers admission judgment parameters, e.g., transmission rate, bandwidth, energy state of BSs. Moreover, the index of solar energy utilization balancing is proposed to improve the balance of energy utilization among different BSs in the proposed algorithm. Finally, simulation results demonstrate that the proposed algorithm performs excellently in improving solar energy utilization and reducing on-grid energy consumption of the HybE-Net.

Measurement and Analysis Energy Consumption of Tilting Train Express (한국형 틸팅열차의 소비전력 측정 및 분석)

  • Huh, Jae-Sun;Kang, Chul;Lim, Jae-Chan;Kim, Jae-Chul;Lee, Su-Gil;Han, Seoung-Ho;Lee, Eun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.157_158
    • /
    • 2009
  • Recently, the growth of electric railway technology steadily keep up in the korea, and occupancy rate of electric railway system increased as a transportation method so energy consumption of railway system is increasing. According to this reason, the many studys of energy consumption in the railway system are in progress. In this context, the TTX(Tilting Train eXpress) needs to measure and analyze energy consumption and regenerative energy. In this paper, because of driving of TTX in the Ho-Nam railroad and Jung-Ang railroad, consumpted and regenerated energy are measured. This measured data is classified and analyzed as driving mode.

  • PDF

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

Analysis of Energy Saving Effect of the Residential BESS Connected to the Balcony-PV in Apartment Houses (공동주택 발코니 PV 연계 가정용 BESS의 에너지 절감 효과 분석)

  • Kim, Cha-Nyeon;Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.21-31
    • /
    • 2020
  • The government mandates gradually zero energy building and Photovoltaic power generation systems installed in buildings are emerging as the most realistic alternative to increase the independence rate of building energy. In this study, we propose a method to reduce the power consumption of households by increasing the PV capacity of balconies and applying the method used the charged electric power stored in batteries after sunset. In order to evaluate the electric power energy savings of the residential BESS, a balcony PV 1.2 kW and a battery pack 2 kWh were installed for 9 houses in 4 apartments in Seoul and Gyeonggi-do. The BESS is charged when the balcony PV is generated electric power, and when solar power generation is finished, it supplies power to the electric appliances connected to the load. As a result of installing the solar PV module 1.2 kW and 2 kWh class BESS for 3 households located in Seoul and Gyeonggi-do, the average electric power consumption saving rate was 40%. The reduction in electricity consumption in the case of zero generation surplus power by maximizing the utilization rate of BESS has been improved to about 53%. Therefore, in order to increase the self-sufficiency rate of electric energy in apartment houses, it is effective to increase the solar photovoltaic capacity of the balcony and apply the residential BESS. In the future, it is believed that the balcony PV and home BESS will play a key role in achieving mandatory zero-energy housing.

Field Test of Energy Storage System on Urban Transit System (도시철도용 에너지저장시스템 에너지 절감을 현장시험)

  • Lee, Han-Min;Kim, Gil-Dong;An, Cheon-Heon;Kim, Young-Gyu;Kim, Tae-Seok
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1461-1467
    • /
    • 2009
  • The electric railway is a clean and energy saving system, because it requires relatively less energy than automobiles by transporting the same passengers or goods. Six thousands of vehicles are operated on Korean urban transit system. This system is 95% of regeneration system. Especially, the VVVF-Inverter vehicle has a merit of the highest regeneration rate. Energy consumption is 90% for traction and 10% for auxiliary supply. Braking energy is about 40% of energy consumption. Up to 40% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system) stores the energy generated during braking and discharges it again when a vehicle accelerates. This paper presents field tests about the energy saving rate of the developed ESS. when the ESS is on/off, energy saving rate of the ESS is tested. The verification test in the field focused on energy saving.

  • PDF

Evaluation of energy consumption of gas hydrate and reverse osmosis hybrid system for seawater desalination (해수담수화 공정을 위한 가스하이드레이트-역삼투 공정의 에너지 소모량 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.459-469
    • /
    • 2016
  • Gas hydrate desalination process is based on a liquid to solid (Gas Hydrate, GH) phase change followed by a physical process to separate the GH from the remaining salty water. The GH based desalination process show 60.5-90% of salt rejection, post treatment like reverse osmosis (RO) process is needed to finally meet the product water quality. In this study, the energy consumption of the GH and RO hybrid system was investigated. The energy consumption of the GH process is based on the cooling and heating of seawater and the heat of GH formation reaction while RO energy consumption is calculated using the product of pressure and flow rate of high pressure pumps used in the process. The relation between minimum energy consumption of RO process and RO recovery depending on GH salt rejection, and (2) energy consumption of electric based GH process can be calculated from the simulation. As a result, energy consumption of GH-RO hybrid system and conventional seawater RO process (with/without enregy recovery device) is compared. Since the energy consumption of GH process is too high, other solution used seawater heat and heat exchanger instead of electric energy is suggested.

Energy Drink Consumption Status and Associated Factors among Male and Female High School Students in Deajon Area (대전 지역 남녀 고등학생의 에너지음료 섭취 실태 및 섭취 관련 요인)

  • Ryu, Si-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.899-910
    • /
    • 2016
  • The purpose of this study was to determine factors related to the consumption of energy drinks among male and female high school students in Daejeon. The research data, derived from the self-administered questionnaire method, was collected from 664 students in fifteen high schools during the spring of 2016. A total of 542 complete questionnaires were analyzed (response rate: 79.8%). Approximately 73% of the students self-reported having consumed energy drinks, with a greater percentage of male (as opposed to female) students self-reporting as having done so. The most common reasons given for the consumption of energy drinks were to stay awake (54.8%), the good taste of the drink (28.0%), to concentrate during studying (17.2%), and to relieve fatigue (16.9%). The adverse effects were palpitation (59.3%), insomnia (35.6%), and experiencing difficulty in waking up (30.5%). More than two in three (67.8%) students who experienced adverse effects still consumed energy drinks. The average level of health consciousness was lower than 3 out of 5 points. The results of the logistic regression analyses indicated a positive relationship between monthly allowance (OR=1.01 for male and female students) and the consumption of energy drinks by both male and female students. Among the male students, freshmen (OR=0.23) were less likely to have consumed energy drinks than juniors. Male students' sleeping hours (OR=0.65) and perceived school life satisfaction scores (OR=0.63) were negatively associated with the consumption of energy drinks. In the case of female students, study hours (OR=0.83) and energy drinks consumption were negatively related. These factors affecting energy drinks consumption could be considered in the development of dietary education programs aimed at protecting high school students from the adverse health impacts of energy drinks.

An Energy Balanced Multi-Hop Routing Mechanism considering Link Error Rate in Wireless Sensor Networks (무선 센서 네트워크의 링크 에러율을 고려한 에너지소모가 균등한 멀티 홉 라우팅 기법)

  • Lee, Hyun-Seok;Heo, Jeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2013
  • In wireless sensor networks, energy is the most important consideration because the lifetime of the sensor node is limited by battery. Most of the existing energy efficient routing protocols use the minimum energy path to minimize energy consumption, which causes an unbalanced distribution of residual energy among nodes. As a result, the power of nodes on energy efficient paths is quickly depletes resulting in inactive. To solve these problems, a method to equalize the energy consumption of the nodes has been proposed, but do not consider the link error rate in the wireless environment. In this paper, we propose a uniform energy consumption of cluster-based multi-hop routing mechanism considering the residual energy and the link error rate. This mechanism reduces energy consumption caused by unnecessary retransmissions and distributes traffic evenly over the network because considering the link error rate. The simulation results compared to other mechanisms, the proposed mechanism is energy-efficient by reducing the number of retransmissions and activation time of all nodes involved in the network has been extended by using the energy balanced path.

A study on the disinfection performance of indoor microorganism using energy consumption analysis for indoor bio-safety (건물 재실자의 미생물 안전을 위한 면역건물 기술의 에너지 사용 연구)

  • Choi, Sang-Gon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.111-118
    • /
    • 2009
  • In this study the real situation of apartment house in seoul is reproduced with multi-zone modeling program CONTAM2.4. This model include disinfection system which is consist of dilution, filtration, UVGI(ultra violet germicidal irradiation). It's energy consumption was also analyzed through the linked model of CONTAM and TRNSYS according to the combination of components. The comparison of total energy consumption through energy analysis revealed that adjusting the air change rate of the UVGI air sterilizer to maintain the same indoor microbe removal capability was more advantageous in terms of energy consumption.