• Title/Summary/Keyword: Energy Consumption Per Unit

Search Result 79, Processing Time 0.028 seconds

Tractor Performance Instrumentation System

  • Wan Ismail, Wan Ishak;Yahya, Azmi;Bardaie, Mohd. Zohadie
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.569-581
    • /
    • 1996
  • A microcomputer -based data acquistion system was designed and developed at Michigan State University , USA to conduct field data studies. The system designed for the research carried out used an Apple IIe microcomputer for collecting data on-board the tractor. An AII3 Analog to Digital (A/D_ convertor was chosen to interface each analog signal to the microcomputer. A commercially available Dj TPM II was employed to display information such as an engine speed, ground speed, percent drive wheel slip , distance travelled and area covered per hour. The frequency output from the radar unit was channeled through a frequency to voltage (F/V) convertor , so that AII3 Analog to Digital (A/D) convertor could read it. The fuel consumption was measured using on EMCO pdp-1 fuel flow meter attached to the engine fuel line. The draft of the tillage and other drag equipment was determined using strain gages attached to the drawbar of the tractor. The system was developed to collect the draft and fuel requirements for various farm equipment different kind of soils.

  • PDF

A layer-wise frequency scaling for a neural processing unit

  • Chung, Jaehoon;Kim, HyunMi;Shin, Kyoungseon;Lyuh, Chun-Gi;Cho, Yong Cheol Peter;Han, Jinho;Kwon, Youngsu;Gong, Young-Ho;Chung, Sung Woo
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.849-858
    • /
    • 2022
  • Dynamic voltage frequency scaling (DVFS) has been widely adopted for runtime power management of various processing units. In the case of neural processing units (NPUs), power management of neural network applications is required to adjust the frequency and voltage every layer to consider the power behavior and performance of each layer. Unfortunately, DVFS is inappropriate for layer-wise run-time power management of NPUs due to the long latency of voltage scaling compared with each layer execution time. Because the frequency scaling is fast enough to keep up with each layer, we propose a layerwise dynamic frequency scaling (DFS) technique for an NPU. Our proposed DFS exploits the highest frequency under the power limit of an NPU for each layer. To determine the highest allowable frequency, we build a power model to predict the power consumption of an NPU based on a real measurement on the fabricated NPU. Our evaluation results show that our proposed DFS improves frame per second (FPS) by 33% and saves energy by 14% on average, compared with DVFS.

The Development of a High Efficiency Luminaires Reflector for Tunnel Lighting (터널용 고효율 조명기구 반사판의 개발)

  • Kim, Gi-Hoon;Hwang, Jae-San;Yun, Mee-Rim;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-6
    • /
    • 2001
  • Tunnel lighting in Korea has the problems of unsatisfactory illuminance uniformity which obstructs driver's vision, a flicker phenomenon on wall of tunnel, a heavy glare, low efficiency of luminaires, low utilization factor, and high energy consumption. We developed a high efficiency luminaire reflector for tunnel lighting which removes these problems. Developed luminaire saves energy and improves lighting environment by increasing 10% of luminaire efficiency. It can reduce installation cost by decreasing the number of luminaires, while average illuminance of 200[lx], overall uniformity of 0.4, longitudinal uniformity of 0.7, and electric power consumptions per unit area of 3.7[W/m$^2$] are accomplished.

  • PDF

The design of fuzzy controller for a stand-by power saving of elevators (엘리베이터의 대기 전력 저감을 위한 퍼지제어기 설계)

  • Won, Hwa-Yeon;Kang, Sung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2368-2374
    • /
    • 2013
  • Elevator power consists of power consumption in stand-by and in service. This paper designed a fuzzy controller saving stand-by power of elevators in a way that calculates the adequate number of elevators by the variable traffic volume of passenger and then powers off elevators being out of service. Also, the fuzzy controller was designed to minimize a increase of the average passenger's waiting time by the limited number of elevators in service. When the fuzzy controller designed in this paper was applied to the group elevator experimental device, The passenger's waiting time increased approximately 7.5%~9.5%, While the stand-by power saving is expected to be about 675KWh a day per unit and about 236.6KWh a year per unit.

Energy Efficiency Evaluation of Publicly Owned Wastewater Utilities (공공하수처리장의 에너지 소비현황 및 효율성 평가)

  • Cho, Eulsaeng;Han, Dae Ho;Ha, Jongsik
    • Journal of Environmental Policy
    • /
    • v.11 no.4
    • /
    • pp.85-105
    • /
    • 2012
  • In this paper, the energy efficiency of wastewater utilities was evaluated to explore ways to save energy via operational measures. The correlation of each wastewater characteristic parameter to energy was assessed to find a set of parameters that explained most of the variations in energy use among utilities. The results show that increases in inflow, influent COD concentration, and ratio of advanced treatment generally increased the energy use. On the other hand, increases in load factor (influentaverage flow/design flow) reduced the energy use. In the regression analysis, the energy efficiency was highest in the A2O advanced process. On the other hand, the membrane process (among the advanced processes) and the contacted aeration process (among the secondary processes) require more efforts in saving energy. However, the data base system related to energy use must be supplemented in order for more accurate analysis of energy consumption in wastewater treatment facilities. In particular, i) electricity consumption of relay pumps and, ii) energy usage per unit process, iii) pump power usage to discharge treated wastewater in a long distance, if necessary, and iv) alternative energy production and utilization status must be recorded. By utilizing the results of the analysis conducted in this study, it is possible to quantify a level of energy savings needed and establish customized energy saving measures to achieve a certain target level for benchmarking a successful case of wastewater utilities.

  • PDF

Analysis of Energy Consumption Pattern and Greenhouse Gas Emission in the Academic Facility (대학에서의 에너지 소비패턴 및 온실가스 배출현황 분석)

  • Kim, Jin-Sik;Lee, Kyoung-Bin;Lee, Im-Hack;Kim, Shin-Do
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.604-612
    • /
    • 2012
  • Self-management plan for GHG (Greenhouse Gas) reduction should be prepared in academic facilities, which occupy a large amount of energy consumption. In this study, a university was chosen as one of the major academic facilities and its energy consuming pattern and GHG emission were analyzed. The results have shown that annual $CO_2$ emission from university buildings was 10,452 ton-$CO_2$ (0.65 ton-$CO_2/m^2$), and dependent upon 78.0% electricity, 20.5% LNG and 1.5% oil, respectively as energy sources. According to more detail analysis by usage of energy consumption, appliances occupies 36.7% followed by gas heating (18.9%), lighting (18.6%), heating with electricity (12.5%), cooling with electricity (10.2%), transportation (1.5%), gas cooling (1.2%) and cooking (0.4%). Furthermore, annual $CO_2$ emissions per unit area and a student by electricity usage were evaluated to 51.30 kg-$CO_2/m^2$ and 981.86 kg-$CO_2$/capita, respectively and those by LNG usage were 14.61 kg-$CO_2/m^2$ and 241.01 kg-$CO_2$/capita.

Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater

  • Kim, Byung-Hyuk;Choi, Jong-Eun;Cho, Kichul;Kang, Zion;Ramanan, Rishiram;Moon, Doo-Gyung;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.630-637
    • /
    • 2018
  • The high rate algal ponds (HRAP) powered and mixed by a paddlewheel have been widely used for over 50 years to culture microalgae for the production of various products. Since light incidence is limited to the surface, water depth can affect microalgal growth in HRAP. To investigate the effect of water depth on microalgal growth, a mixed microalgal culture constituting three major strains of microalgae including Chlorella sp., Scenedesmus sp., and Stigeoclonium sp. (CSS), was grown at different water depths (20, 30, and 40 cm) in the HRAP, respectively. The HRAP with 20cm of water depth had about 38% higher biomass productivity per unit area ($6.16{\pm}0.33g{\cdot}m^{-2}{\cdot}d^{-1}$) and required lower nutrients and energy consumption than the other water depths. Specifically, the algal biomass of HRAP under 20cm of water depth had higher settleability through larger floc size (83.6% settleability within 5 min). These results indicate that water depth can affect the harvesting process as well as cultivation of microalgae. Therefore, we conclude that water depth is an important parameter in HRAP design for mass cultivation of microalgae.

Study on Organic Rankine Cycle (ORC) for Maximum Power Extraction from Low-Temperature Energy Source (저온 열원으로부터 최대 동력을 생산하기 위한 유기랭킨사이클(ORC)에 관한 연구)

  • Kim, Kyoung-Hoon;Han, Chul-Ho;Kim, Gi-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • ORC(organic Rankine cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. This work analyzes performance of ORC with superheating using low-temperature energy sources in the form of sensible energy. Maximum mass flow rate of a working fluid relative to that of a source fluid is considerd to extract maximum power from the sources. Working fluids of R134a, $iC_4H_{10}$ and $C_6C_6$, and source temperatures of $120^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$ are considered in this work. Results show that for a fixed source temperature thermal efficiency increases with evaporating temperaure, however net work per unit mass of source fluid has a maximum with respect to the evaporating temperature in the range of low source temperature. Results also show that the maximum power extraction is possible with R134a for the source temperature of $120^{\circ}C$, with $iC_4H_{10}$ for $200^{\circ}C$, and with $C_6C_6$ for $300^{\circ}C$.

Application of Electrochemical Method for Decolorization of Biologically Treated Animal Wastewater Effluent (생물학적 축산폐수 처리수 색도제거를 위한 전기화학적 방법의 적용)

  • 윤성준;신종서;라창식
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.315-324
    • /
    • 2006
  • This research was conducted to clarify the characteristics of electrochemical decolorization of effluent discharged from a biological animal wastewater treatment process and to finally establish parameters or mode for optimum operation of electrolysis system. Average color unit of wastewater was about 1,200 and DSA(Dimensionally Stable Anode) was used as electrode. Experiments were performed with two different operation conditions or modes, fixed voltage-free current(Run A) and free voltage-fixed current(Run B). Color removal rate was proportional to the electrode area and electrical conductivity, and an equation subject to them at a condition of fixed voltage was derived as follows; Ct=C0ekt, k=[{0.0121×a(dm2)× c(mS/cm)}+0.0288], [where, C0: initial color, Ct: color unit after treatment for t, k: reaction coefficient, t: time(min.), a: electrode area, c: conductivity]. From the study on the effects of current density on color removal, it was revealed that the removal efficiency of color was function of the current density, showing direct proportion. However, when considered energy consumption rate, maintenance of low current density was an economical way. Based on the obtained results, it was concluded that supplementation of electrolyte is not necessary for the removal of color from the effluent of secondary treatment process and operation with the mode of free voltage-fixed current, rather than operation with fixed voltage-free current mode, would be an efficient way to increase the removal performance and capacity per consumed energy.

An Experimental Study to Establish a System for Vertifying the Insulation Performance of Buildings (건축물의 단열성능 검증 시스템 구축을 위한 실험적 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.203-211
    • /
    • 2021
  • Recently, the insulaton design standards for reducing the energy use of buildings have been strengthened. Althoug insulation work is the most cost-effective method for reducing the primary energy consumption per unit area of a building, there are no evaluation criteria for insulation performance at the time of construction and completion inspection. The purpose of this study is to provide objective data by establishing a standard for an analysis method and a method for easily experimenting with the exterior wall thermal transmittance of an apartment house using a thermal transmittance measuring device(TESTO 435). For the exterior wall of the test subject, the specific heat per unit area exceeded 20kJ/(m2·K), and the data at the end point suitable for ISO 9869-1 were analyzed by the average method. The measured values of the thermal transmittance for 3 consecutive days converged within +5% of the desing value, and the standard deviation of the thermal transmittance by day decreased in the order of 1-Day > 3-Day > 2-Day. The standard deviation of the thermal transmittance by time period decreased in the order of 00:00~24:00 < 19:00~07:00 < 00:00~07:00. The measured value of the thermal transmittance for the time perion of 00:00 to 07:00 per day almost coincided with an error of -3% to + 2% compare to the desing value.