• Title/Summary/Keyword: Energy Consumption Efficiency

Search Result 1,785, Processing Time 0.023 seconds

Comparison Analysis of Building's Heating Energy Consumption in the Apartment Complex - Focused on Apartment in Daejeon - (공동주택 단지 내 동별 난방에너지소요량 비교 분석 - 대전지역 아파트단지를 중심으로 -)

  • Jang, Young-Hye;Kim, Jeong-Gook;Kim, Jonghun;Jeong, Hakgeun;Hong, Won-Hwa;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: Apartment is a typical residential type in Korea. In the past, apartment types were very monotonous. But today, the types of complex are changed because personal needs have been diversified and personalized. In order to meet those needs, construction companies are constructing various types of apartments. The more apartment types are diverse, the more the energy problems are taken place. So, the purpose of this study is to solve the problem of energy gap in the same complex through improving the thermal transmittance of wall. Method: Heating energy consumption of Building Energy Efficiency Rating System and heating energy usage of apartment show a similar trend on the graph. In order to identify the best position of heating energy consumption difference reduction, we change the building's U-value of front, back, side walls. Result: In the A complex, maximum and minimum heating energy consumption building's shapes are flat. the best efficiency is side U-value change and the worst is front change. In the E complex, maximum heating energy consumption building's shape is tower and minimum building shape is flat. Consequently, the front and back wall performance change was little effect to reduce energy gap, while the change of side wall's U-value show the great reduction between building's energy consumptions.

Survey on Building Owner's Awareness of Building Energy Load (건물주의 건축물 에너지 부하량 인식 조사)

  • Yeo, Chang-Jae;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.292-293
    • /
    • 2014
  • Many project (such ESCO or BRP) are being implemented for existing building energy saving. Most of medium or large building that use many energy being implemented this project. In the case of large or medium building must implement obligatorily Energy auditing. Therefore, They can be recognize their building energy consumption situation. But, In the case of small building don't need obligatorily energy auditing. Therefore, They can't be recognize their building energy consumption situation. As a result, Small buildings are difficult to participate in energy efficiency retrofit. In this research, Building owners of buildings energy load recognition and energy efficiency retrofit possible participation was analysis though survey. Survey results, Most building owners don't know building energy load. But they have a good mind to retrofit building energy efficiency. As a result, If they have energy load information, they will be participate energy efficiency retrofit.

  • PDF

Analysis of standby power for enhancing the energy efficiency of a hotel guestroom - Focusing on check-out status - (호텔 객실의 에너지 효율화를 위한 대기전력 분석 - 체크아웃 상태를 중심으로 -)

  • Lee, Junsoo;Koo, Choongwan
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • The issue of hotel energy use is growing more significant as the hotel industry expands. It is important to take into account the electrical installation and space-specific features in a room unit in order to comprehend the energy consumption of a hotel guestroom. In light of this, this study aimed to analyze standby power for enhancing the energy efficiency of a hotel guestroom during check-out status. This study was conducted in three steps: (i) data collection; (ii) analysis of energy consumption patterns; and (iii) analysis of energy efficiency improvement plan. The main findings of this study can be summarized as follows. First, 32.24% of energy was used in fan coil unit) during check-out status. Second, a hotel guestroom had a 4.30% energy saving potential, based on energy consumption patterns during check-out status. This study can contribute to support hotel management to operate guestrooms differently by helping them identify patterns in energy use and realize potential savings.

An Efficient Scheduling Method based on Dynamic Voltage Scaling for Multiprocessor System (멀티프로세서 시스템을 위한 동적 전압 조절 기반의 효율적인 스케줄링 기법)

  • Noh, Kyung-Woo;Park, Chang-Woo;Kim, Seok-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.421-428
    • /
    • 2008
  • The DVS(Dynamic Voltage Scaling) technique is the method to reduce the dynamic energy consumption. As using slack times, it extends the execution time of the big load operations by changing the frequency and the voltage of variable voltage processors. Researches, that controlling the energy consumption of the processors and the data transmission among processors by controlling the bandwidth to reduce the energy consumption of the entire system, have been going on. Since operations in multiprocessor systems have the data dependency between processors, however, the DVS techniques devised for single processors are not suitable to improve the energy efficiency of multiprocessor systems. We propose the new scheduling algorithm based on DVS for increasing energy efficiency of multiprocessor systems. The proposed DVS algorithm can improve the energy efficiency of the entire system because it controls frequency and voltages having the data dependency among processors.

Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles (전기자동차 에너지효율 평가를 위한 수치해석 연구)

  • Mingi Choi
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

Packet Size Optimization for Improving the Energy Efficiency in Body Sensor Networks

  • Domingo, Mari Carmen
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2011
  • Energy consumption is a key issue in body sensor networks (BSNs) since energy-constrained sensors monitor the vital signs of human beings in healthcare applications. In this paper, packet size optimization for BSNs has been analyzed to improve the efficiency of energy consumption. Existing studies on packet size optimization in wireless sensor networks cannot be applied to BSNs because the different operational characteristics of nodes and the channel effects of in-body and on-body propagation cannot be captured. In this paper, automatic repeat request (ARQ), forward error correction (FEC) block codes, and FEC convolutional codes have been analyzed regarding their energy efficiency. The hop-length extension technique has been applied to improve this metric with FEC block codes. The theoretical analysis and the numerical evaluations reveal that exploiting FEC schemes improves the energy efficiency, increases the optimal payload packet size, and extends the hop length for all scenarios for in-body and on-body propagation.

Study on the Reduction of Energy Consumption in the Pulsed Corona Discharge Process for NOx Removal (질소산화물 제거를 위한 펄스코로나 방전공정의 에너지 소모 저감에 관한 연구)

  • 정재우;손병학;조무현;목영선;남궁원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.475-483
    • /
    • 1999
  • A lab-scale test was carried out to study the reduction of electrical energy consumption in the pulsed corona discharge process for nitrogen oxides removal. The experiment was mainly focused on 1) the activation of pollution removal reactions by chemical additives and 2) the optimization of electrical circuit for the efficient energy transfer from the power supply to the corona reactor. Hydrocarbon chemical additives used in the experiment are thought to be responsible for the enhancement of the NO conversion through the chain reactions of free radicals such as, R, RCO, and RO. Electrical energy consumption per converted NO molecule has a minimum value of 17 eV when pentanol is injected. When ethylene and propylene are injected, 30 eV and 22 eV of electrical energy consumption is required for the conversion of NO molecule respectively. The ratio of the pulse forming capacitance$(C_e)$ to the reactor capacitance$(C_R)$ plays an important role in the energy transfer efficiency to the reactor. Maximum energy transfer efficiency of approximately 72% could be obtained by using the pulse forming capacitance which is 3.4 times larger than the reactor capacitance, and also the maximum NO conversion efficiency was observed with the same condition.

  • PDF

Empirical Research on Application of ICT for Reduction of Energy Consumption of Hospital Buildings (ICT를 활용한 병원건물의 에너지 절감방안 연구)

  • Lee, Junghwan;Han, Youngdo;Kim, Dongwook
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.422-430
    • /
    • 2018
  • Increase in oil prices and building energy consumption has been a great burden for Korea which has significant energy dependence on foreign energy sources. In this context, reduction of building energy consumption, which comprises 40% of total energy consumption, is a very important issue. This research therefore empirically analyzed a hospital "P" that implemented ICT-based energy consumption and cost reduction initiative. The hospital first replaced existing water absorber for heating/cooling air and boiler for heating water with water heat storage heat pump system. This was accompanied by subscribing to different electricity price plans to maximize cost reduction. Secondly, the hospital additionally applied ICT-based optimized control algorithm that considers surrounding factors (external temperature, changes in energy demand). The analysis of these mechanisms indicate that the ICT-based energy consumption and cost reduction initiative for hospitals can reduce energy consumption by 53.6% with replacement of low-efficiency equipment and additionally by 18.2% with optimized control algorithm. The mechanisms will provide energy consumption reduction opportunities for other hospitals and buildings with high energy consumption.

A Study on the Application State of the Fenestration Energy Consumption Efficiency Rating System in Construction Field (소규모 민간건축 시공현장에 있어서 창호에너지 소비효율등급제의 적용 현황에 관한 연구)

  • Kang, Suk-Pyo;Jin, Eun-Mi;Yun, Yeo-Myun;Park, Sang-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.24-25
    • /
    • 2014
  • Up to now, most the fenestration industry is consisted of glazing and window frame in Korea. According to the Fenestration Energy Consumption Efficiency Rating System and Energy Saving Design Standards of Buildings, u-value of fenestration is defined as the value of calculation with glazing and frame. For this reason, when applying for a building permit, in most cases, the official approval test report of the set of windows and doors is used. Nevertheless, in windows construction progresses, most construction manager take delivery of the glazing and frame separately. For those reason, windows and doors are constructed regardless of the report of the Fenestration Energy Consumption Efficiency Rating System in most construction fields. From now on, the research of the connection method between reality of policy and reality of construction fields should be carried out.

  • PDF

Energy-Connectivity Tradeoff through Topology Control in Wireless Ad Hoc Networks

  • Xu, Mengmeng;Yang, Qinghai;Kwak, Kyung Sup
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • In this study, we investigate topology control as a means of obtaining the best possible compromise between the conflicting requirements of reducing energy consumption and improving network connectivity. A topology design algorithm capable of producing network topologies that minimize energy consumption under a minimum-connectivity constraint is presented. To this end, we define a new topology metric, called connectivity efficiency, which is a function of both algebraic connectivity and the transmit power level. Based on this metric, links that require a high transmit power but only contribute to a small fraction of the network connectivity are chosen to be removed. A connectivity-efficiency-based topology control (CETC) algorithm then assigns a transmit power level to each node. The network topology derived by the proposed CETC heuristic algorithm is shown to attain a better tradeoff between energy consumption and network connectivity than existing algorithms. Simulation results demonstrate the efficiency of the CECT algorithm.