• Title/Summary/Keyword: Energy Beamforming

Search Result 36, Processing Time 0.035 seconds

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.

Joint Beamforming and Power Splitting Design for Physical Layer Security in Cognitive SWIPT Decode-and-Forward Relay Networks

  • Xu, Xiaorong;Hu, Andi;Yao, Yingbiao;Feng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • In an underlay cognitive simultaneous wireless information and power transfer (SWIPT) network, communication from secondary user (SU) to secondary destination (SD) is accomplished with decode-and-forward (DF) relays. Multiple energy-constrained relays are assumed to harvest energy from SU via power splitting (PS) protocol and complete SU secure information transmission with beamforming. Hence, physical layer security (PLS) is investigated in cognitive SWIPT network. In order to interfere with eavesdropper and improve relay's energy efficiency, a destination-assisted jamming scheme is proposed. Namely, SD transmits artificial noise (AN) to interfere with eavesdropping, while jamming signal can also provide harvested energy to relays. Beamforming vector and power splitting ratio are jointly optimized with the objective of SU secrecy capacity maximization. We solve this non-convex optimization problem via a general two-stage procedure. Firstly, we obtain the optimal beamforming vector through semi-definite relaxation (SDR) method with a fixed power splitting ratio. Secondly, the best power splitting ratio can be obtained by one-dimensional search. We provide simulation results to verify the proposed solution. Simulation results show that the scheme achieves the maximum SD secrecy rate with appropriate selection of power splitting ratio, and the proposed scheme guarantees security in cognitive SWIPT networks.

Energy-Efficient Cooperative Beamforming based CMISO Transmission with Optimal Nodes Deployment in Wireless Sensor Networks

  • Gan, Xiong;Lu, Hong;Yang, Guangyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3823-3840
    • /
    • 2017
  • This paper analyzes the nodes deployment optimization problem in energy constrained wireless sensor networks, which multi-hop cooperative beamforming (CB) based cooperative-multi-input-single-output (CMISO) transmission is adopted to reduce the energy consumption. Firstly, we establish the energy consumption models for multi-hop SISO, multi-hop DSTBC based CMISO, multi-hop CB based CMISO transmissions under random nodes deployment. Then, we minimize the energy consumption by searching the optimal nodes deployment for the three transmissions. Furthermore, numerical results present the optimal nodes deployment parameters for the three transmissions. Energy consumption of the three transmissions are compared under optimal nodes deployment, which shows that CB based CMISO transmission consumes less energy than SISO and DSTBC based CMISO transmissions. Meanwhile, under optimal nodes deployment, the superiorities of CB based CMISO transmission over SISO and DSTBC based CMISO transmissions can be more obvious when path-loss-factor becomes low.

Multi-Tag Beamforming Scheme Based on Backscatter Communication for RF Energy Harvesting Networks (RF 에너지 하베스팅 네트워크를 위한 Backscatter 통신 기반의 다중 태그 빔포밍 기법)

  • Hong, Seung Gwan;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In this paper, we propose a scheme for MIMO beamforming for the backscatter communication using a multi-tag to improve the efficiency of energy harvesting and the BER of received signals. We obtain a normal channel information through a communication between the H-AP and multi-tag. The H-AP sets parameters for the transmission scenario of the spatial channel model (SCM) using the obtained channel information and generates a SCM channel information. Then, the H-AP transmits signals that have optimal transmission power to increase the signal-to-interference-plus-noise ratio (SINR) to each of tags. Tags perform a backscatter communication with signals. The receiver performs a time switching technique of energy harvesting using backscatter signals from the multi-tag. Simulation results demonstrate effectiveness of the proposed scheme, and the harvesting efficiency and BER at the receiver is greatly improved.

Acoustic Noise Measurement for the Wind Turbine Blade by Using Time-domain Beamforming (시간영역 빔포밍을 사용한 풍력터빈 축소모델 소음원 측정)

  • Cho, Tae-Hwan;Kim, Cheol-Wan
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.25-30
    • /
    • 2009
  • The wind tunnel test to identify the acoustic noise source position of the wind turbine blade was conducted in KARI low speed wind tunnel. Microphone array and time-domain beamforming methodology was applied to this study. To reduce the data processing time, a modified beamforming method with a criteria between calculation time step and grid size for rotating angle in the cylinderical coordinate system was proposed. The test results shows that the data processing time to identify the noise source position was reduced to 20% compared with conventional method. And the dominant noise source of the blade moves from inboard to blade tip as the frequency increases.

  • PDF

Real-time implementation of distributed beamforming for simultaneous wireless information and power transfer in interference channels

  • Hong, Yong-Gi;Hwang, SeongJun;Seo, Jiho;Lee, Jonghyeok;Park, Jaehyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.

Reduced Feedback Energy Based Hybrid Beamforming for Millimeter Wave MIMO Systems (다중 안테나 밀리미터파 시스템에서 피드백 에너지를 절감시키는 하이브리드 빔포밍 기술)

  • Noh, Jeehwan;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.3-8
    • /
    • 2014
  • We consider a limited feedback based hybrid beamforming which reduces the energy of feedback information. In the millimeter wave channel, some rays with large ray gain dominate energy of the channel. Using this point, we propose a channel feedback scheme that employs limited number of channel rays. Also, we provide a hybrid beamforming scheme for the limited feedback system. Based on the simulation results, the proposed scheme shows a comparable data rate performance with conventional schemes, while it remarkably reduces energy of channel feedback.

Energy-Efficient Antenna Selection in Green MIMO Relaying Communication Systems

  • Qian, Kun;Wang, Wen-Qin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2016
  • In existing literature on multiple-input multiple-output (MIMO) relaying communication systems, antenna selection is often implemented by maximizing the channel capacity or the output single-to-noise ratio (SNR). In this paper, we propose an energy-efficient low-complexity antenna selection scheme for MIMO relaying communication systems. The proposed algorithm is based on beamforming and maximizing the Frobenius norm to jointly optimize the transmit power, number of active antennas, and antenna subsets at the source, relaying and destination. We maximize the energy efficiency between the link of source to relay and the link of relay to destination to obtain the maximum energy efficiency of the system, subject to the SNR constraint. Compared to existing antenna selection methods forMIMO relaying communication systems, simulation results demonstrate that the proposed method can save more power in term of energy efficiency, while having lower computational complexity.

Analysis on Spectrum Utilization Strategies in Cognitive Radio Network Based on Multi-Antenna Wireless Energy Transfer (다중안테나 무선 전력 전송에 기반한 인지 무선 네트워크에서의 스펙트럼 활용방안 분석)

  • Lee, Sung-bok;Park, Jaehyun;Kang, Kyu-Min;Park, Yunju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • This paper presents spectrum utilization strategies in cognitive radio (CR) networks powered by multi-antenna based wireless energy transfer. Secondary access point (AP) with multiple antennas should transfer the energy to the secondary sensor nodes with energy beamforming and simultaneously induces no interference to PUs. In addition, sensor nodes can transmit information to the secondary AP using the harvested energy, only when the spectrum is not utilized by PUs. We analyze the achievable rate of the CR sensor networks and propose an interference nulling energy beamforming method to maximize the achievable rate. Finally, we also propose a frame scheduling algorithm in which the durations of wireless energy transfer/information transfer frames (phases) are optimized.