• Title/Summary/Keyword: Energy/electron transfer

Search Result 306, Processing Time 0.03 seconds

Charge-Transfer Complex Formation of Amines with Organic Halides (II) Complex Forming Tendency by Various Electron Acceptors (아민과 有機할로겐 化合物間의 Charge Transfer Complex 形成에 關한 硏究 (II) Electron Acceptor 에 따른 Charge Transfer Complex 形成能에 關한 硏究)

  • Kim, Yoo-Sun;Oh, Jung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.126-131
    • /
    • 1967
  • Various amines (Triethylamine, Diethylamine, Dimethylaniline, Pyridine and Diphenylamine) and electron acceptors (Carbontetrachloride, iodine monochloride and iodine) were reacted in the hexane solvent system to form a charge transfer complex in each case. The tendency of forming a charge transfer complex by these electron acceptors was proportional to the basicity of amines and the different type of complex was formed as the polarity of electron donor had markedly changed, which were identified by ultraviolet spectrophotometry. A correlation between the formation of complex and the basicity of amine and the polarity of electron acceptor was discussed.

  • PDF

Analysis of Intramolecular Electron Transfer in A Mixed-Valence Cu(Ⅰ)-Cu(Ⅱ) Complex Using the PKS Model

  • So Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.385-388
    • /
    • 1992
  • The transition probabilities for the thermal intramolecular electron transfer and the optical intervalence transfer band for a symmetric mixed-valence Cu(I)-Cu(II) compound were used to extract the PKS parameters $\varepsilon$ = -1.15, ${\lambda}$ = 2.839, and ${\nu}g$- = 923 $cm^{-1}$. These parameters determine the potential energy surfaces and vibronic energy levels. Three pairs of vibrational levels are below the top of the energy barrier in the lower potential surface. The contribution of each vibrational state to the intramolecular electron transfer was calculated. It is shown that the three pairs of vibrational states below the top of the barrier are responsible for most of the electron transfer at 261-306 K. So the intramolecular electron transfer in this system is a tunneling process. The transition probability exhibits the usual high-temperature Arrhenius behavior, but at lower temperature falls off to a temperature-independent value as tunneling from the lowest levels becomes the limiting process.

STUDY OF CONTACT ION PAIR DYNAMICS IN VIEW OF THE MOLECULAR SHAPES

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.147-151
    • /
    • 1996
  • Dynamics of contact ion-pair between 1, 2, 4, 5-tetracyanobenzene anion and cation of biphenyl derivatives was investigated on the picosecond time scale. Solvent effect on the electron transfer was observed and electron transfer rates were examined using Marcus equation which contains distance dependence of the electron transfer rate in the frequency factor, along with the consideration of molecular shape. From the discussion based on disk model for molecular shape, contribution of interring torsional motion of biphenyl to the inner-sphere reorganization energy is strongly suggested, which leads to the physical explanation for the observed solvent effect on the rate of electron transfer.

  • PDF

Investigation of the Electron-phonon Interaction in Metals (금속에 있어서 전자-음향자 상호작용에 관한 연구)

  • 김성규;김예현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.92-96
    • /
    • 1982
  • In this paper, the interaction of electron and phonon in metals is expressed using Hamiltonian operator as follows. By excahnging phonon energy with in the vicinity of isotropical Fermi surface and using following electron and hole operators. We obtain the interaction of electron and phonon. And new Feynman Graphs are tried with the following conditions on. First, when state transfer state, phonon cannot be created. Second, when state transfer state, phonon cannot be destroyed. Third, when state transfer state, phonon can be created or destroyed. Fourth, when state transfer state, phonon can be created or destroyed.

  • PDF

A Electron-Transfer Study on Self-Assembled Viologen Monolayer In different Electrolytes Using Electrochemical Process (전기화학법을 이용한 전해질 변화에 따른 Viologen 자기조립박막의 전하이동 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Park, Jae-Chul;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.878-881
    • /
    • 2004
  • When it converted solar energy or light energy into chemical energy, it studied the electric charge transfer property of the viologen which is used widely as the electron acceptor for the electric charge delivery mediation of the devices. It was formed monolayer in QCM by self-assembled viologen. The absorbed quantities of viologen's electron through peak current and to analyze the electron transfer property of viologen in redox reaction made experiments in cyclic voltammetry among the electrochemical process. It studied the electron transfer relation of viologen from changing the anion in 0.1M NaCl and $NaClO_4$ electrolyte and the interrelation between scan rate and peak current when scan rate increased twice.

  • PDF

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF

더블 전자 층 간의 상호관계와 드래그 현상

  • Lee, Ga-Yeong
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • Coulomb drag is an effective probe into interlayer interaction between two electron systems in close proximity. For example, it can be a measure of momentum, phonon, or energy transfer between the two systems. The most exotic phenomenon would be when bosonic indirect excitons (electron-hole pairs) are formed in double layer systems where electrons and holes are populated in the opposite layers. In this review, we present various drag phenomena observed in different double layer electron systems, e.g. GaAs/AlGaAs heterostructures and two-dimensional material based heterostructures. In particular, we address the different behavior of Coulomb drag depending on its origin such as momentum or energy transfer between the two layers and exciton condensation. We also discuss why it is difficult to achieve electron-hole pairs in double layer electron systems in equilibrium.

Theoretical Studies on Dicyanoanthracenes as Organic Semiconductor Materials: Reorganization Energy

  • Park, Young-Hee;Kim, Yun-Hi;Kwon, Soon-Ki;Koo, In-Sun;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1649-1656
    • /
    • 2010
  • Internal reorganization energy due to the structural relaxation in hole or electron hopping mechanism is one of the measurements of key indices in designing an organic thin film transistor (OTFT) for flexible display devices. In this study, the reorganization energies of dicyanoanthracenes for the hole and electron transfer were estimated by adiabatic potential energy surface and normal mode analysis method in order to examine the effect on the energies for the positional variation of the cyano substituents in the anthracene as a protocol of acenes to design an organic field effect transistor. The reorganization energy for the hole transfer was reduced considerably upon cyanation of anthracene, especially at the 9,10-positions of anthracene, and the origin of the reduction was interpreted in terms of understanding the coupling of vibrational modes to the hole transfer.

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)

  • Park, Won-choul;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.381-385
    • /
    • 2006
  • The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.