• Title/Summary/Keyword: Energetic Material

Search Result 117, Processing Time 0.024 seconds

Nitrogen Incorporation of Nanostructured Amorphous Carbon Thin Films by Aerosol-Assisted Chemical Vapor Deposition

  • Fadzilah, A.N.;Dayana, K.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.165-171
    • /
    • 2013
  • Nanostructured pure a-C and nitrogen doped a-C: N thin films with small particle size of, ~50 nm were obtained by Aerosol-assisted CVD method from the natural precursor camphor oil. Five samples were prepared for the a-C and a-C: N respectively, with the deposition temperatures ranging from $400^{\circ}C$ to $600^{\circ}C$. At high temperature, the AFM clarifies an even smoother image, due to the increase of the energetic carbon ion bombardment at the surface of the thin film. An ohmic contact was acquired from the current-voltage solar simulator characterization. The higher conductivity of a-C: N, of ${\sim}{\times}10^{-2}Scm^{-1}$ is due to the decrease in defects since the spin density gap decrease with the nitrogen addition. Pure a-C exhibit absorption coefficient, ${\alpha}$ of $10^4cm^{-1}$, whereas for a-C:N, ${\alpha}$ is of $10^5cm^{-1}$. The high ${\sigma}$ value of a-C:N is due to the presence of more graphitic component ($sp^2$ carbon bonding) in the carbon films.

Innovative Modeling of Explosive Shock Wave Assisted Drug Delivery (고에너지물질에 의한 약물 전달 시스템 연구)

  • Yoh, Jai-Ick;Kim, Ki-Hong;Lee, Kyung-Cheol;Lee, Hyun-Hee;Park, Kyoung-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2006
  • Recent advances in energetic materials modeling and high-resolution hydrocode simulation enable enhanced computational analysis of bio-medical treatments that utilize high-pressure shock waves. Of particular interest is in designing devices that use such technology in medical treatments. For example, the generated micro shock waves with peak pressure on orders of 10 GPa can be used for treatments such as kidney stone removal, transdermal micro-particle delivery, and cancer cell removal. In this work, we present a new computational methodology for applying the high explosive dynamics to bio-medical treatments by making use of high pressure shock physics and multi-material wave interactions. The preliminary calculations conducted by the in-house code, GIBBS2D, captures various features that are observed from the actual experiments under the similar test conditions. We expect to gain novel insights in applying explosive shock wave physics to the bio-medical science involving drug injection. Our forthcoming papers will illustrate the quantitative comparison of the modeled results against the experimental data.

  • PDF

Development of combustion test device for study of aluminum powder combustion (알루미늄 분말 연소시험을 위한 장치 개발)

  • Hwang, Yong-Seok;Lee, Ji-Hyung;Lee, Kyung-Hun;Kim, Kwang-Yun;Lee, Sung-Woong;Yeo, Tae-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.548-553
    • /
    • 2011
  • The device for studying combustion characteristic of aluminum powder and water was developed. The device has ability to adjust temperature, pressure, and equivalent ratio to some specified value which effect on combustion characteristic of aluminum and water mixture. Methane combustor, water supply device, aluminum powder feeder, and linear combustor are assembled to aluminum combustion test device. Each device has the ability to supply matter to combustor on steady and quantitatively controlled manner and test sequence specified by user can be automatically controlled. The combustion of aluminum powder was observed when integrated device was operated normally.

  • PDF

A Pyrotechnic Mixture Composition and Design Verification of Bright Flash (파이로테크닉 고섬광 발생장치 조성설계 및 설계검증)

  • Kim, Hyung Jun;Choi, Sung Wook;Kwon, Mi Ra;Hwang, Jun Sik;Chang, Kwe Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.289-295
    • /
    • 2014
  • The composition of bright flash device is a pyrotechnic mixture consisting of metal powder, oxidizer and additives. A pyrotechnic mixture of bright flash device generates a bright flash through burning after being ignited by initiator. The function of bright flash is to distract or incapacitate electro optical sensor systems and enemy eyes temporally. This study is to develop composition of pyrotechnic mixture of bright flash and to analyze the test results by considering intensity and efficiency of light.

Fabrication of the Fine Magnetic Abrasives by using Mechanical Alloying Process and Its Polishing Characteristics (기계적 합금화 공정을 이용한 초미세 자성연마입자의 제조 및 특성 평가)

  • Park Sung-Jun;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.34-41
    • /
    • 2004
  • A new method to fabricate the fine magnetic abrasives by using mechanical alloying is proposed. The mechanical alloying process is a solid powder process where the powder particles are subjected to high energetic impact by the balls in a vial. As the powder particles in the vial are continuously impacted by the balls, cold welding between particles and fracturing of the particles take place repeatedly during the ball milling process using a planetary mill. After the manufacturing process, fine magnetic abrasives which the guest abrasive particles c lung to the base metal matrix without bonding material can be obtained. The shape of the newly fabricated fine magnetic abrasives was investigated using SEM and its polishing performance was verified by experiment. It is very helpful to finishing the injection mold steel in final polishing stage. The areal ms surface roughness of the workpiece after several polishing processes has decreased to a few nanometer scales.

Innovative Modeling of Explosive Shock Wave Assisted Drug Delivery (고에너지물질에 의한 약물 전달 시스템 연구)

  • Yoh, Jai-Ick;Kim, Ki-Hong;Lee, Kyung-Cheol;Lee, Hyun-Hee;Park, Kyoung-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.213-217
    • /
    • 2006
  • Recent advances in energetic materials modeling and high-resolution hydrocode simulation enable enhanced computational analysis of bio-medical treatments that utilize high-pressure shock waves. Of particular interest is in designing devices that use such technology in medical treatments. For example, the generated micro shock waves with peak pressure on orders of 10 GPa can be used for treatments such as kidney stone removal, trans-dermal micro-particle delivery. and cancer cell removal. In this work, we present a new computational methodology for applying the high explosive dynamics to bio-medical treatments by making use of high pressure shock physics and multi-material wave interactions. The preliminary calculations conducted by the in-house code, GIBBS2D, captures various features that are observed from the actual experiments under the similar test conditions. We expect to gain novel insights in applying explosive shock wave physics to the bio-medical science involving drug injection. Our forthcoming papers will illustrate the quantitative comparison of the modeled results against the experimental data.

  • PDF

Precision exploration of space resources using laser-induced breakdown spectroscopy (레이저 유도 플라즈마 분광분석법을 활용한 정밀 우주 자원 탐사)

  • Choi, Soo-Jin;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • A short laser pulse irradiates a sample to create the highly energetic plasma that emits light of a specific wavelength peak according to the material. By identifying different peaks for the analyzed samples, its chemical composition can be rapidly determined. The LIBS (Laser-Induced Breakdown Spectroscopy) has great advantages as an elemental analyzer on board a space rover, namely real-time rapid analysis and stand-off detection. The LIBS signal intensity is remarkably increased by using double-pulse LIBS system for component analysis of lunar environments where the surrounding pressure is low. Also the angle of target is adjusted for replicating arbitrary shapes of the specimen.

Development of 1-N class Thruster System based on ADN Monopropellant (ADN 단일 추진제 기반 1N 급 추력기 시스템 개발)

  • Kim, Jincheol;Choi, Woojoo;Jo, Yeongmin;Jeon, Jonggi;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.406-408
    • /
    • 2017
  • Ammonium dinitramide (ADN) Low toxicity monopropellant based 1N class thruster and test equipment were developed. Compared with the hydrazine which used in existing satellite thruster, ADN is easy to handle and has excellent physical characteristics such as density and specific impulse. Due to these characteristics, ADN is attracting attention as an eco-friendly propellant. In this paper, 1N class thruster and thrust measurement system was designed for performance testing of ADN monopropellant. The composition of the propellant for the design and experiment was set at 11.2: 25.4: 63.4 for each of Methanol: $H_2O$: ADN.

  • PDF

Predictive Analysis on Explosive Performance and Sensitivity of 1-Substituted Trinitroimidazoles (트리나이트로이미다졸 치환체들의 화약성능 및 감도 예측 분석)

  • Jeon, Yeongjin;Kim, Hyoun-Soo;Kim, Jin Seuk;Cho, Soo Gyeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.543-550
    • /
    • 2017
  • Various chemical properties including density and heat of formation of 1-substitued trinitroimidazoles (TNIs) were estimated by using density functional theory (DFT). Using chemical properties estimated by DFT, explosive performance and sensitivity of 1-substitued TNIs were analyzed by following the ADD Method-1 procedure. The results were displayed on two-dimensional performance-sensitivity plot, and were compared with those of explosive molecules commonly used in many military systems. Different 1-substituents of TNI made that both explosive performance and impact sensitivity were changed significantly. Methyl substituted TNI became moderately insensitive and slightly less powerful. Amino, fluoro, picryl, and difluoroamino substituted TNIs were highly powerful like RDX and HMX, but greatly sensitive. Nitro substituted TNI was predicted to be extremely sensitive to be handled as a secondary explosive.

A Study on the Aesthetic Characteristics of the Interior Space Elements in Through the Analysis of Visual Perception Korea Traditional Upper Class Residence - Focused on Kangneung Sunkyojang - (시지각적 분석을 통해 본 한국 전통상류주택 내부공간 구성요소의 의장적 특성에 관한 연구 - 강릉선교장을 중심으로 -)

  • Kwon, Ki-Hwa;Choi, Sang-Hun
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.10a
    • /
    • pp.65-70
    • /
    • 2005
  • The human scale of the interior space of a korean traditional residence is normally user-friendly. And this aspect is reinterpreted and implemented in the modern structure. While our conscious awareness has become greatly westernized through the east-west exchanges, the interior of the traditional Korean residence has always reflected the people and their daily lives of the time. In this study, an attempt has been made to identify the aesthetic characteristics of the inner space elements through the analysis of visual perception inside a Korean traditional upper class residence, kangreung Sunkyojang, designated as the 5th Cultural Information Material with regards to the inherent philosophy and human scale that influenced the emotions of the Korean people. The different parts of the interior space of Anchae, and the Symmetrical of Formal, Balance of the walls give a sense of calmness, and the ornaments are used to give gaiety. The ceiling of Yeolwhadang hall give an energetic feeling and pillare are used to enhance spaciousness. In Whalejeong, by making use of similar and continuous lines, the light and darkness was controlled and the link with nature has been emphasized. Different decorations used reflect scholarly spirit.

  • PDF