References
- S. G. Cho, "A Systematic Procedure to Predict Explosive Performance and Sensitivity of Novel High-Energy Molecules in ADD, ADD Method-1," In : Handbook of Material Science Research(Rene. C, Turcotte. E, Eds), Nova Publishers, 2010.
- H. S. Kim, "Basic Technologies for the Development of High Explosives," Korean Chem. Eng. Res, Vol. 44, No. 5, 435-443, 2006.
- C. K. Kim, B. J. Lee, C. H. Oh, H. W. Lee, K. H. Chung, K. J. Kim, C. H. Kim, and S. E, Park, "Final Report, the 2nd Stage, Design and Synthesis Laboratory, High Energy Material Research Center," Agency for Defense Development Report, ADDR-407-091115, 2009.
- S. G. Cho, E. M. Goh, "A Study on Generating a Database and Deriving an Efficient Methodology to Predict Heat of Formation of High-Energy Molecules," Agency for Defense Development Report, TEDC-519-021438, 2002.
- Y. F. Li, X. W. Fan, Z. Y. Wang and X. H. Ju, "A Density Functional Study of Substituted Pyrazole Derivatives," THEOCHEM, 896, 96-102, 2009. https://doi.org/10.1016/j.theochem.2008.11.004
- L. Turker, T. Atalar, S. Gumus and Y. Camur, "A DFT Study on Nitrotriazines," J. Hazard. Mat., 167, 440-448, 2009. https://doi.org/10.1016/j.jhazmat.2008.12.134
- L. Xiaohong, Z. Ruizhou and Z. Xianzhou, "Computational Study of Imidazole Derivative as High Energetic Materials," J. Hazard. Mat., 183, 622-631, 2010. https://doi.org/10.1016/j.jhazmat.2010.07.070
- X. Su, S. Cheng and S. Ge, "Theoretical Investigation on Structure and Properties of 2,4,5-Trinitroimidazole and Its Three Derivatives," THEOCHEM, 895, 44-51, 2009. https://doi.org/10.1016/j.theochem.2008.10.006
- P. Ravi, G. M. Gore, S. P. Tewari and A. K. Sikder, "Theoretical Studies on Amino- and Methyl-Substituted Trinitrodiazoles," J. Energ. Mat., 29, 209-227, 2011. https://doi.org/10.1080/07370652.2010.514319
- Z. Yu, E. R. Bernstein, "On the Decomposition Mechanisms of New Imidazole-Based Energetic Materials," J. Phys. Chem. A, 117, 1756-1764, 2013.
- J. Li, "Relationships for the Impact Sensitivities of Energetic C-Nitro Compounds Based on Bond Dissociation Energy," J. Phy. Chem B, 114, 2198-2202, 2010. https://doi.org/10.1021/jp909404f
- H. Chen, X. Cheng, Z. Ma and X. Su, "Theoretical Studies of C-bond Dissociation Energies for Chain Nitro Compounds," THEOCHEM, 807, 43-47, 2007. https://doi.org/10.1016/j.theochem.2006.12.005
- X. Su, X. Cheng, C. Meng and X. Yuan, "Quantum Chemical Study on Nitroimidazole, Polyniroimidazole and Their Methyl Derivatives," J. Hazard. Mat., 161, 551-558, 2009. https://doi.org/10.1016/j.jhazmat.2008.03.135
- W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, "Ab Initio Molecular Orbital Theory," Wiley, New York, 1986.
- M. J. Frisch, et al., "Gaussian 03, Revision D.02," Gaussian, Inc., Wallinford, CT, 2004.
- A. R. Katritzky and A. F. Pozharskii, "Handbook of Heterocyclic Chemistry," Pergamon, Amsterdam, Netherland, pp. 91-140, 2000.
- A. V. Kimmel, P. V. Sushko, A. L. Shluger and M. M. Kuklja, "Effect of Molecular and Lattice Structure on Hydrogen Transfer in Molecular Crystals of Diamino-dinitroethylene and Triaminotrinitrobenzene," J. Phys. Chem. A, 112, 4496-4500, 2008.
- C. K. Kim, S. G. Cho, C. K. Kim, H.-Y. Park, H. Zhang and H. W. Lee, "Prediction of Densities for Solid Energetic Molecules with Molecular Surface Eletrostatic Potentials," J. Comput. Chem., 29, 1818-1824, 2008. https://doi.org/10.1002/jcc.20943
- J. Akhavan, "The Chemistry of Explosives," The Royal Society of Chemistry, Cambridge, UK, pp. 49-62, 2004.
- M. Suceska, "EXPLO5 User's Guide," 2010
- S. G. Cho, K. T. No, E. M. Goh, J. K. Kim, J. H. Shin, Y. D. Joo and S. Seong, "Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Materials," Bull. Korean. Chem. Soc., 26, 399-408, 2005. https://doi.org/10.5012/bkcs.2005.26.3.399