• 제목/요약/키워드: Endothelium-independent relaxation

검색결과 35건 처리시간 0.026초

L-Arginine의 산화질소생성과 무관한 혈관이완효과 (Nitric Oxide/cGMP-Independent Vasorelaxation Enhanced by L-Arginine)

  • 문승호;이종은;유광재;오봉석;이동준
    • Journal of Chest Surgery
    • /
    • 제31권2호
    • /
    • pp.102-107
    • /
    • 1998
  • L-Arginine이 산화질소 생성의 전구물질로서 공헌하는 것 이외에 다른 기전에 의하여도 혈관이완을 일으키는가 구명하기 위하여 적출 흰쥐 흉부대동맥 표본에서 L-arginine에 의한 장력, 조직 산화질소 및 cGMP 함량 변동 등을 조사하여 다음과 같은 결과를 얻었다. 1. Phenylephrine(3.5$\times$10-6 mol/L) 수축 대동맥 표본은 L-arginine(10-9~10-3 mol/L)에 의해 용량의존 이완되었다. NG-Nitro-L-arginine methyl ester(L-NAME, 10-5 mol/L) 전처치에 의해 저농도 L-arginine(10-9~10-6 mol/L)에 혈관이완 효과는 소실되었으나 고농도 L-arginine(10-4~10-3 mol/L)의 이완효과는 도리어 증강되었다. 내피층 파괴 혈관 표본은 L-arginine에 대해 이완반응을 보이지 않았다. 2. L-NAME(10-5 mol/L) 존재하에 일어나는 L-arginine 이완효과는 indomethacin 전처치에 의해 영향받지 않으나, ouabain 전처치에 의해 유의하게 감약되었다. 또한 L-arginine 이완효과는 methylene blue에 의해 부분적으로 길항되었다. KCl(3.5$\times$10-2 mol/L) 수축 대동맥 표본은 L-arginine(10-9~10-3 mol/L)에 의해 L-NAME (10-5 mol/L) 처치와 무관하게 이완반응을 보이지 않았다. 3. L-NAME는 혈관조직 산화질소 함량을 감소시키며 이 감소효과는 L-arginine(10-4 mol/L)에 의해 영향받지 않았다. 또한 L-NAME는 혈관조직 cGMP 함량을 감소시키나 이 감소효과는 L-arginine에 의해 영향받지 않았다. 이상의 실험성적은 L-arginine이 내피세포의 산화질소 및 cGMP 생성과 무관한 기전을 통해서도 내피의존 혈관이완효과를 나타냄을 시사하였다.

  • PDF

Panax 속 한약재가 흰쥐 혈관운동성에 미치는 영향에 관한 비교 연구 (The Effects of Water Extract of Genus Panax on Rat Blood Vessels)

  • 유기덕;최호영;이재성;안덕균;김형환
    • 대한한의학회지
    • /
    • 제25권1호
    • /
    • pp.60-71
    • /
    • 2004
  • Objectives : We have examined the relaxational response to the water extract of genus Panax in rat thoracic aorta and mesenteric artery. Methods : Segments of thoracic aorta and mesenteric artery obtained from rats immediately after delivery were mounted in organ baths superfused on a polygraph. Results : We found that the thoracic aorta segments responded to the water extract of genus Panax with a dose-dependent vasorelaxation. At $10^{-5}m$ 5-hydroxytrptamine (5-HT), the maximal contraction force were 94.9% of the maximum KCl-response. At $10^{-5}m$ 5-HT - induced contraction, The contractile response of thoracic aortic rings were inhibited by 54.7%, 36.3% and 31.3% after addition of the high concentration (100 mg/ml) of water extract of Panax ginseng, Panax japonicus and Panax quinquefolium. The contractile response of mesenteric arteries were inhibited by 88.3%, 87.7%, and 70.3% after addition of the high concentration (100 mg/ml) of water extract of Panax ginseng, Panax japonicus and Panax quinquefolium. Conclusions : In conclusion, water extract of genus Panax - induced relaxation in the isolated rat thoracic aorta and mesenteric artery were composed of endothelium - independent relaxation and dose - dependent relaxation.

  • PDF

PTU-처치가 흰쥐대동맥의 수축 및 이완 반응에 미치는 영향 (Vascular Responses to Vasoactive Drugs in Propylthiouracil-Treated Rat Aorta)

  • 심일청;김인겸;김중영
    • 대한약리학회지
    • /
    • 제26권2호
    • /
    • pp.135-144
    • /
    • 1990
  • Propylthiouracil(PTU)을 4주 및 12주간 투여한 흰쥐의 대동맥을 적출하여 혈관수축제와 이완제에 대한 반응을 관찰하여 다음과 같은 결과를 얻었다. PTU를 처치한 실험군에서는 대조군에 비해 현저한 체중저하와 혈중 갑상선호르몬의 감소를 보였다. PTU를 처치한 흰쥐의 대동맥에 대한 norepinephrine (NE)과, calcium및 potassium 이온에 의한 최대수축 반응은 대조군에 비하여 유의하게 감소되었다. 그러나 NE에 대한 중간유효량은 증가되었으나, calcium이온에 대한 중간 유효량은 유의한 차이가 없었다. 그리고 acetylcholine, histamine, isoproterenol 및 nitroprusside에 의한 대동맥의 이완작용은 대조군에 비해 증가된 경향을 보였다. PTU를 12주간 처치한 군에 있어서 acetylcholine에 의한 최대 이완반응은 대조군에 비해 유의하게 증가되었지만 다른 이완제에 의해서는 유의한 차이가 없었다. PTU를 4주간 처치한 군에 있어서는 대조군에 비하여 혈관이완제에 대한 중간억제량은 유의한 차이가 없었지만, 12주 처치군에 있어서는 isoproterenol 및 nitroprusside에 대한 중간억제량은 감소 되었으나 acetylcholine 및 histamine에 대한 중간억제량은 유의한 차이가 없었다. 이상의 결과로 미루어 보아 PTU-처치에 의한 혈관 반응성의 변화는 혈관 내피세포보다는 혈관 평활근세포자체의 변화에 기인되며, 이러한 세포내의 변화는 갑상선 기능이 저하된 후에도 계속되고 있음을 알 수 있었다.

  • PDF

당고특대황(唐古特大黃)의 주증(酒蒸) 여부가 혈관이완 기전에 미치는 영향 (Differential Mechanisms of Vascular Relaxation between Alcohol Steamed Rhei Tangutici Radix et Rhizoma and Rhei Tangutici Radix et Rhizoma)

  • 양재경;신흥묵
    • 대한본초학회지
    • /
    • 제25권4호
    • /
    • pp.17-21
    • /
    • 2010
  • Objectives : The aim of this study was to evaluate the differential mechnism of vasodilation of alcohol steamed Rhei Tangutici Radix et Rhizoma. (ART) and Rhei Tangutici Radix et Rhizoma. (RT) in rat thoracic aorta. Methods : Rat aortic ring preparations were mounted in organ baths with oxygenated (95% $O_2$-5% $CO_2$) Krebs-Ringer bicarbonate solutions at $37{\pm}0.5^{\circ}C$ and subjected to contractions or relaxations. Results : ART exerted vasorelaxation on phenylephrine(PE)-induced contraction in a dose dependent manner. Vasorelaxation effects of ART and RT were endothelium-independent. In the $Ca^{2+}$-free high KCl (60 mM) baths, the contraction of aortic rings induced by accumulative addition of $Ca^{2+}$ (0.3-10.0 mM) was significantly reduced by pre-treatment with both ART and RT for 10 min. The magnitude of vasodilatation was biggerin ART. Moreover, verapamil ($0.001{\mu}M$) and diltiazem ($10{\mu}M$), voltage operative $Ca^{2+}$channel blockers, attenuated the relaxation effect of ART but not that of RT. In the absence of extracellular $Ca^{2+}$, pre-incubation of the aortic rings with RT ($1.0mg/m{\ell}$) significantly reduced the contraction caused by PE but not that of ART. $K^+$ channel inhibitors such as glibenclamide (Gli, $10^{-5}M$), tetraethylammonium (TEA, 1 mM) and 4-aminopyridine (4-AP, 0.2 mM) significantly reduced the ART's vasorelaxation efficacy, but not that of RT. However, the relaxation effects of ART and RT were not inhibited by pre-treatment with indomethacin ($10^{-5}M$), and atropine ($10^{-6}M$). Conclusions : These results suggest that the endothelium-independent relaxation is due to inhibition of $Ca^{2+}$ influx via the suppression of $Ca^{2+}$ release from intracelluar store in RT but via both voltage operative $Ca^{2+}$channel blockage and $K^+$ channel activation in ART.

삼황사심탕의 혈관이완 효능과 기전 (Vasodilatory Effects of Samhwangsasim-tang on Vascular Smooth Muscle)

  • 김종봉;권오규;손창우;신흥묵
    • 동의생리병리학회지
    • /
    • 제18권5호
    • /
    • pp.1382-1386
    • /
    • 2004
  • This study was performed for the investigation of vasodilatory efficacy and its underlying mechanisms of Samhwangsasim-tang(SST), herbal remedy. SST relaxed vascular strips precontracted with phenylephrine or KCI(51 mM), but the magnitude of relaxation was greater in phenylephrine(PE) induced contraction. The relaxation effects of SST was endothelium-independent. L-NAME, iNOS inhibitor, and methyl en blue(MB), cGMP inhibitor, did not attenuate the relaxation responses of SST. In the absence of extracellular Ca2+, pre-incubation of the aortic rings with SST significantly reduced the contraction by PE, suggesting that the relaxant action of the SST includes inhibition of Ca/sup 2+/ influx and release of Ca/sup 2+/ from intracellular stores (SR). In addition, the cell death was induced by SST in human aortic smooth muscle cells but not that of human umbilical vein endothelial cells. We conclude that in rat thoracic aorta, SST may induce in part vasodilation through inhibition of Ca/sup 2+/ influx and release of Ca/sup 2+/ from intracellular stores.

Effect of Heme Oxygenase Induction by NO Donor on the Aortic Contractility

  • Kim, Chang-Kyun;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권1호
    • /
    • pp.87-92
    • /
    • 2001
  • Carbon monoxide (CO) binds to soluble guanylate cyclase to lead its activation and elicits smooth muscle relaxation. The vascular tissues have a high capacity to produce CO, since heme oxygenase-2 (HO-2) is constitutively expressed in endothelial and smooth muscle cells, and HO-1 can be greatly up-regulated by oxidative stress. Moreover, the substrate of HO, heme, is readily available for catalysis in vascular tissue. Although the activation of heme oxygenase pathway under various stress conditions may provide a defence mechanism in compromised tissues, the specific role of HO-1-derived CO in the control of aortic contractility still remains to be elucidated. The present study was done to determine the effect of HO-1 induction on the aortic contractility. Thus, the effects of incubation of aortic tissue with S-nitroso-N-acetylpenicillamine (SNAP) for 1 hr on the aortic contractile response to phenylephrine were studied. The preincubation with SNAP resulted in depression of the vasoconstrictor response to phenylephrine. This effect was restored by HO inhibitor or methylene blue but not by NOS inhibitor. The attenuation of vascular reactivity by preincubation with SNAP was also revealed in endothelium-free rings. $AlF4^--evoked$ contraction in control did not differ from that in SNP-treated group. These results suggest that increased production of CO was responsible for the reduction of the contractile response to phenylephrine in aortic ring preincubated with SNAP and this effect of SNAP was independent on endothelium.

  • PDF

고지방 식이로 유도된 당뇨병성 죽상경화 마우스 모델에서 밀몽화의 효능 연구 (Effect of Buddleja officinalis in Diabetic Atherosclerotic Mouse Model Using High Fat Diet)

  • 황선미;이윤정;김은주;김혜윰;리향;최용준;조남근;이호섭;강대길
    • 대한본초학회지
    • /
    • 제24권4호
    • /
    • pp.55-62
    • /
    • 2009
  • Objectives : This study was designed to investigate the effects of an aqueous extract from Buddleja officinalis Maxim (ABO) on vascular dysfunction in low-density lipoprotein receptor deficient (LDLr KO) mice. Methods : Present study showed that LDLr KO mice were fed a high fat diet consisting of 60 kcal% fat, with or without 200 mg/day/kg ABO of diet, for 14 weeks. Results : High fat diet-LDLr KO mice were treated with ABO were completely normalized by lowering glucose. ABO reduced intima/media thickness in a high fat diet-LDLr KO mice without affecting plasma cholesterol and triglyceride levels. ABO caused endothelium-dependent relaxation in the acetylcholine-precontracted aorta of high fat diet-LDLr KO mice. ABO increased eNOS expression, while decreased cell adhesion molecules expression in high fat diet-LDLr KO mice. Conclusions : In conclusion, chronic treatment with ABO improved hyperglycemia and endothelium-dependent vascular relaxation as well as exhibited anti-inflammatory effect in diabetic atherosclerotic mouse model, independent of effects on plasma lipids.

Effects of Kanagawa Hemolysin on Blood Pressure and Arterial Tone in Rats

  • Kim, Young-Moon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.225-233
    • /
    • 2002
  • Kanagawa hemolysin (KH), an exotoxin produced from Kanagawa phenomenon-positive Vibrio parahemolyticus, has been shown to possess various biological activities including hemolysis, enterotoxicity, cytotoxicity, and cardiotoxicity. The aim of this study was to investigate the effect of KH on the cardiovascular system and its mechanism, employing in vivo and in vitro experiments of the rat. Intracerebroventricular (icv) administration of 100 mHU KH produced a marked and continuous pressor effect (icv KH-pressor effect), and the icv pressor effect was not repeatable. However, intravenous (iv) injection of the same dose of KH induced a prominent depressor effect (iv KH-depressor effect). The icv KH-pressor effect was inhibited by acid-denaturation, while the iv KH-depressor effect was not. Simultaneous icv administration of the three agents (ouabain, diltiazem, or bumetanide: $10{\mu}g/kg$ each) significantly reduced the pressor effect. The icv KH-pressor effect was inhibited by treatment with iv phentolamine or chlorisondamine, but was not affected by iv candesartan. The iv KH-depressor effect was repeatable and was attenuated by treatment with iv NAME or methylene blue. In vitro experiments using isolated thoracic aorta, $10^{-6}$ M phenylephrine (PE) and 50 mM KCl produced a sustained contraction. In rings contracted with either agents, KH showed relaxant responses in a concentration- dependent fashion and the relaxation (KH-vasorelaxation) was not dependent on the existence of the endothelium. The KH-vasorelaxation in the endothelium-intact rings contracted by PE was abolished by methylene blue treatment. In summary, the present findings suggest that in the icv KH-pressor effect the cation leak-inducing action of KH is implicated, which leads to the increased central sympathetic tone, that the iv KH-depressor effect results from the vasorelaxation via NO-guanylate cyclase system, and that the KH-vasorelaxation is independent of the endothelium and the guanylate cyclase system is involved in it. In conclusion, the mechanism of KH producing the icv pressor effect may not be identical to that of KH producing the iv depressor effect.

Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition

  • Chung, Yoon Hee;Oh, Keon Woong;Kim, Sung Tae;Park, Eon Sub;Je, Hyun Dong;Yoon, Hyuk-Jun;Sohn, Uy Dong;Jeong, Ji Hoon;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.139-145
    • /
    • 2018
  • The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane $A_{2-}$, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities.

성향정기산(星香正氣散)이 가토의 경동맥(頸動脈) 평활근(平滑筋) 긴장(緊張) 및 $Ca^{2+}$ 대사(代謝)에 미치는 영향(影響) (Effect of Sunghyangchungisan on Contractile Reactivity and $Ca^{2+}$ metabolism in Isolated Rabbit Carotid Artery)

  • 김영균;권정남;김종훈
    • 대한한방내과학회지
    • /
    • 제21권3호
    • /
    • pp.377-388
    • /
    • 2000
  • Objective : This study was undertaken to evaluate the effect of Sunghyangchungisan (SHCS) on the regulation of vascular tone and $Ca^{2+}$ metabolism in arterial tissues. Vascular rings isolated from rabbit carotid artery were myographed isometrically in isolated organ baths and the effect of SHCS on contractile activities, endothelial function and $Ca^{2+}$ metabolism were determined. Methods : In phentobarbital sodium-anesthetized rabbits, SHCS administered through ear vein (100 mg/Kg body wt.) or intragastric dwelling tube (300 mg/Kg body wt.) attenuated phenylephrine (PE, 10 ${\mu}g$/Kg, i.v.)-induced increases in both systolic and diastolic cartoid arterial blood pressure. Results : In experiments with isolated arterial strips, SHCS relaxed arterial rings which were pre-contracted by phenylephrine (PE, 1 ${\mu}M$). The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to PE, it inhibited the PE-induced contraction by a similar magnitude which was comparable to the relaxation of pre-contracted arterial rings. Washout of SHCS after observing its relaxant effect resulted in a full recovery of PE-induced contractions, indicating that the action mechanism is reversible. The observation that SHCS did not change the $ED_{50)$ of PE oh its dose-response curve ruled out the possible interaction of SHCS with ${\alpha}$-receptors. The relaxant effect of SHCS was not affected by removal of endothelium or a nitric oxide synthase inhibitor, L-NAME. Methylene blue, an inhibitor of the soluble guanylate cyclase, did not affect the relaxant effect of SHCS. These results suggest that the action of SHCS is not mediated by the endothelium nor soluble guanylate cyclase. Constant cGMP production determined in arterial strips in the presence or absence of SHCS is consistent with this conclusion. When contraction was induced by additive application of $Ca^{2+}$ in arterial rings which were pre-depolarized by high $K^+$ in a $Ca^{2+}$-free solution, the relaxant effect of SHCS was attenuated by increasing the $Ca^{2+}$ concentration. SHCS, when applied to the arterial rings pre-contracted by PE and then relaxed by nifedipine, a $Ca^{2+}$ channel blocker, did not show additive relaxation. SHCS partially blocked $Ca^{2+}$ influx stimulated by PE and high $K^+$ which was determined by 5-min ^{45}Ca$ uptake, while it did not affect $Ca^{2+}$ efflux. Conclusions : From above results, it is suggested that SHCS relax PE-induced contraction of rabbit carotid artery in an endothelium independent manner, andinhibition of $Ca^{2+}$ influx may contribute to the underling mechanism.

  • PDF