Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.233

Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition  

Chung, Yoon Hee (Department of Anatomy, College of Medicine, Chung-Ang University)
Oh, Keon Woong (Department of Pathology, College of Medicine, Chung-Ang University)
Kim, Sung Tae (Department of Pharmacology, College of Medicine, Chung-Ang University)
Park, Eon Sub (Department of Pathology, College of Medicine, Chung-Ang University)
Je, Hyun Dong (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu)
Yoon, Hyuk-Jun (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu)
Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Jeong, Ji Hoon (Department of Pharmacology, College of Medicine, Chung-Ang University)
La, Hyen-Oh (Department of Pharmacology, College of Pharmacy, The Catholic University of Korea)
Publication Information
Biomolecules & Therapeutics / v.26, no.2, 2018 , pp. 139-145 More about this Journal
Abstract
The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane $A_{2-}$, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities.
Keywords
ERK1/2; fluoride; hypothermia; MYPT1; phorbol ester; Rho-kinase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ajay, M., Gilani, A. U. and Mustafa, M. R. (2003) Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci. 74, 603-612.   DOI
2 Akata, T. (2007) Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating $Ca^{2+}$ mobilization and/or myofilament $Ca^{2+}$ sensitivity in vascular smooth muscle cells. J. Anesth. 21, 232-242.   DOI
3 Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249.   DOI
4 Appel, L. J., Brands, M. W., Daniels, S. R., Karanja, N., Elmer, P. J. and Sacks, F. M. (2006) Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 47, 296-308.   DOI
5 Brietz, A., Schuch, K. V., Wangorsch, G., Lorenz, K. and Dandekar, T. (2016) Analyzing ERK 1/2 signalling and targets. Mol. Biosyst. 12, 2436-2446.   DOI
6 Evora, P. R., Cable, D. G., Chua, Y. L., Rodrigues, A. J., Pearson, P. J. and Schaff, H. V. (2007) Nitric oxide and prostacyclin-dependent pathways involvement on in vitro induced hypothermia. Cryobiology 54, 106-113.   DOI
7 Ferland, D. J., Darios, E. S., Neubig, R. R., Sjogren, B., Truong, N., Torres, R., Dexheimer, T. S., Thompson, J. M. and Watts, S. W. (2016) Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul. Pharmacol. 88, 30-41.
8 Gu, Z., Kordowska, J., Williams, G. L., Wang, C. L. and Hai, C. M. (2007) Erk1/2 MAPK and caldesmon differentially regulate podosome dynamics in A7r5 vascular smooth muscle cells. Exp. Cell Res. 313, 849-866.   DOI
9 Gallet, C., Blaie, S., Levy-Toledano, S. and Habib, A. (2003) Thromboxane-induced ERK phosphorylation in human aortic smooth muscle cells. Adv. Exp. Med. Biol. 525, 71-73.
10 Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-H2252.   DOI
11 Ito, K., Matsuzaki, M., Sasahara, T., Shin, M. and Yayama, K. (2015) Orthovanadate-induced vasoconstriction of rat mesenteric arteries is mediated by rho kinase-dependent inhibition of myosin light chain phosphatase. Biol. Pharm. Bull. 38, 1809-1816.   DOI
12 Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol. Cells 27, 191-198.   DOI
13 Ruppert, C., Deiss, K., Herrmann, S., Vidal, M., Oezkur, M., Gorski, A., Weidemann, F., Lohse, M. J. and Lorenz, K. (2013) Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 110, 7440-7445.   DOI
14 Jensen, K. O., Held, L., Kraus, A., Hildebrand, F., Mommsen, P., Mica, L., Wanner, G. A., Steiger, P., Moos, R. M., Simmen, H. P. and Sprengel, K. (2016) The impact of mild induced hypothermia on the rate of transfusion and the mortality in severely injured patients: a retrospective multi-centre study. Eur. J. Med. Res. 21, 37.   DOI
15 Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33.   DOI
16 Kim, J. G., Sung, H. J., Ok, S. H., Kwon, S. C., Cheon, K. S., Kim, H. J., Chang, K. C., Shin, I. W., Lee, H. K., Chung, Y. K. and Sohn, J. T. (2011) Calcium sensitization involved in dexmedetomidine-induced contraction of isolated rat aorta. Can. J. Physiol. Pharmacol. 89, 681-689.   DOI
17 Oh, T. G., Cha, W. C., Jo, I. J., Kang, M. J. and Lee, D. W. (2015) A survey-based study on the protocols for therapeutic hypothermia in cardiac arrest patients in Korea: focusing on the differences between level 1 and 2 centers. Clin. Exp. Emerg. Med. 2, 210-216.   DOI
18 Pfitzer, G. (2001) Invited review: regulation of myosin phosphorylation in smooth muscle. J. Appl. Physiol. 91, 497-503.   DOI
19 Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003) $Ca^{2+}$-dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556.
20 Somlyo, A. P. and Somlyo, A. V. (2003) $Ca^{2+}$ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358.   DOI
21 Tankersley, C. G., Irizarry, R., Flanders, S. E., Rabold, R. and Frank, R. (2003) Unstable heart rate and temperature regulation predict mortality in AKR/J mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R742-R750.   DOI
22 Taubert, D., Berkels, R., Klaus, W. and Roesen, R. (2002) Nitric oxide formation and corresponding relaxation of porcine coronary arteries induced by plant phenols: essential structural features. J. Cardiovasc. Pharmacol. 40, 701-713.   DOI
23 Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232.   DOI
24 Zou, Q., Leung, S. W. and Vanhoutte, P. M. (2015) Transient receptor potential channel opening releases endogenous acetylcholine, which contributes to endothelium-dependent relaxation induced by mild hypothermia in spontaneously hypertensive rat but not wistar-kyoto rat arteries. J. Pharmacol. Exp. Ther. 354, 121-130.   DOI
25 Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990-994.   DOI
26 Wier, W. G. and Morgan, K. G. (2003) ${\alpha}1$-Adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 150, 91-139.
27 Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of $Ca^{2+}$ entry and $Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774.
28 Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504.   DOI