• Title/Summary/Keyword: Endoscope lens

Search Result 15, Processing Time 0.022 seconds

Research to Minimize Endoscope and Objective-lens Sensitivity Using Multi-configurations (다중 구성을 이용한 내시경 및 대물렌즈 광학계 공차 민감도 최소화 설계 기술)

  • Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.259-265
    • /
    • 2021
  • Recently, lens manufacturing and assembly technology has greatly improved. However, tight requirements of manufacturing and assembly lead to an increase in cost and manufacturing time, and in some cases the performance of an optical system may deteriorate depending on the operating environment's conditions, such as temperature or vibration. In addition, the use of a compensator is an effective method to reduce sensitivity in an ultra-precision optical system, but in the case of a small lens, such as that in an endoscope, it is difficult to use a compensator due to the size limitation of the lens barrel. Therefore, minimizing lens sensitivity is the most important technology in lens design. For this reason, there have been various attempts to reduce the lens sensitivity, and there is a trend to add functions to reduce the sensitivity in the lens design S/W. In this paper, we introduce a design technology that minimizes lens sensitivity. We first design a lens with quite good performance, then analyze the sensitivity of this lens, make a multi-configuration with high-sensitivity element error, and then reoptimize it. We prove with an example that this design technique is very effective.

A Study on a Ultra-wide-angle Wireless Digital Electronic Endoscope Modules (초광각 무선 디지털 전자 내시경 모듈에 관한 연구)

  • Shim, Dongha;Kim, Hyung-O;Lee, Bong-Ju;Hong, Seung-Cheol;Lee, Jason;Cha, Jaesang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.570-574
    • /
    • 2014
  • This paper proposes a wireless digital endoscope with a ultra-wide-angle view. Two key components are implemented to demonstrate the feasibility of the proposed endoscope. First, a ultra-wide-angle lens module with the field of view of 144 degree and F-number of 2.2 is designed and manufactured. Second, a wireless module for a high-speed video transfer is implemented using a USB device server and wireless LAN router. The wireless module can directly transfer a streaming video to a computer with the resolution of 1920x1080, frame rate of 30 fps, and data rate of 53.3 Mbps without an internet connection. Since the wireless module supports two USB devices, two spots can be simultaneously observed using the proposed endoscope.

Evaluation of optical properties for the development of high resolution ophthalmic endoscope (고 분해능 안구내시경 개발을 위한 광학적 특성 평가)

  • Lee Bongsoo;Cho Dong Hyun;Kim Sin;Cho Hyosung
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.429-434
    • /
    • 2004
  • An ophthalmic endoscope which is used in medical applications should have the total diameter less than 1 mm. Its image resolution is limited to 30∼40 lp/mm. Therefore, the image resolution is one of the most important factors to decide image quality of the ophthalmic endoscopic images. This study obtained high resolution and magnifying ophthalmic endoscopic images by a new optical design using a 0.23 pitch GRIN lens and high resolution fiber-optic image guide which has less than 5 ${\mu}{\textrm}{m}$ diameter microfibers. The resolutions of images from existing and from a new type of ophthalmic endoscope are measured and compared using a USAF resolution target.

Design of UWB/WiFi Module based Wireless Transmission for Endoscopic Camera (UWB/WiFi 모듈 기반의 내시경 카메라용 무선전송 설계)

  • Shim, Dongha;Lee, Jaegon;Yi, Jaeson;Cha, Jaesang;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Ultra-wide-angle wireless endoscopes are demonstrated in this paper. The endoscope is composed of an ultra-wide-angle camera module and wireless transmission module. A lens unit with the ultra-wide FOV of 162 degrees is designed and manufactured. The lens, image sensor, and camera processor unit are packaged together in a $3{\times}3{\times}9-cm3$ case. The wireless transmission modules are implemented based on UWB- and WiFi-based platform, respectively. The UWB-based module can transmit HD video to a computer in resolution of $2048{\times}1536$ (QXGA) and the frame rate of 15 fps in MJPEG compression mode. The maximum data transfer rate reaches 41.2 Mbps. The FOV and the resolution of the endoscope is comparable to a medical-grade endoscope. The FOV and resolution is ~3X and 16X higher than that of a commercial high-performance WiFi endoscope, respectively. The WiFi-based module streams out video to a smart device with th maximum date transfer rate of 1.5 Mbps at the resolution of $640{\times}480$ (VGA) and the frame rate of 30 fps in MJPEG compression mode. The implemented components show the feasibility of cheap medical-grade wireless electronic endoscopes, which can be effectively used in u-healthcare, emergency treatment, home-healthcare, remote diagnosis, etc.

The use of augmented reality navigation technology in combination with endoscopic surgery for the treatment of an odontogenic cyst of the upper jaw: A technical report

  • Lysenko, Anna;Razumova, Alexandra;Yaremenko, Andrey;Ivanov, Vladimir;Strelkov, Sergey;Krivtsov, Anton
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.225-230
    • /
    • 2022
  • Purpose: This report presents the first known use of a rigid endoscope with augmented reality technology for the removal of an odontogenic cyst that penetrated the maxillary sinus and illustrates its practical use in a patient. Materials and Methods: In the preoperative period, cone-beam computed tomography was performed in a specially designed marker holder frame, and the contours of the cyst and the nearest anatomical formations were segmented in the 3D Slicer program. During the operation, a marker was installed on the patient's head, as well as on the tip of the endoscope, which made it possible to visualize the mass and the movement of the endoscope. The surgical intervention was performed with the support of augmented reality in HoloLens glasses (Microsoft Corporation, Redmond, WA, USA). Results: The use of this technology improved the accuracy of surgical manipulations, reduced operational risks, and shortened the time of surgery and the rehabilitation period. Conclusion: With the help of modern technologies, a navigation system was created that helped to track the position of the endoscope in mixed reality in real time, as well as to fully visualize anatomical formations.

Design of an Endoscopic Microscope Objective Composed of GRIN(Gradient-Index) Lens with Scanning Devices (GRIN 렌즈로 구성된 주사방식의 내시현미경 대물렌즈의 설계)

  • Kim, Keyong-Jeong;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.311-318
    • /
    • 2009
  • We present an attractive real time in-vivo endoscopic microscope with a resolution of submicron, in which two kinds of optical correcting plates are inserted to eliminate higher order spherical aberration and field curvature. And, since the conventional objective lens is replaced to GRIN lenses with diameter of 1 mm, the above endoscopic microscope can be effectively utilized to invade minimally for live animals.

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor (RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계)

  • Hong, Young-Gee;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.286-295
    • /
    • 2021
  • A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.

Design of an Ultrasmall Flexible-endoscope Illumination Optical System with Bat-wing Light Distribution

  • Ju-Yeop Yim;Chul-Woo Park;Mee-Suk Jung
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.755-760
    • /
    • 2023
  • In this paper, an illumination optical system that can mitigate the saturation phenomenon in the center of an image (caused by the typical flexible-endoscope illumination system using LEDs with Lambertian light distribution) is designed. When an LED with Lambertian light distribution is used as a light source, the amount of light in the center of the endoscopic illumination system is relatively high, compared to the periphery, causing saturation in the image. Since this phenomenon causes difficulty in detecting the patient's lesion, it is necessary to find a lighting-system design that can alleviate the saturation phenomenon. Therefore, in this paper a lighting system with bat-wing light distribution, which can lower the intensity at the center and secure the maximum amount of light at the maximum light distribution angle, is designed. In addition, to check the performance of the designed lighting system, a simulation of illumination and luminance is conducted for a system using a common aspherical lens with otherwise the same components. As a result, it is confirmed that the lighting system designed in this paper effectively reduces the luminance value at the center and secures more luminance values at the periphery than the familiar lighting system.

Design of an Endoscopic Microscope Objective Lens Composed of Flexible Fiber Bundle and Gradient-index with a High Resolution and a Minimally-Invasive Outer Diameter (광섬유 다발과 Gradient-index Lens가 결합된 고 분해능 및 최소침습 직경의 공초점 내시 현미경 대물렌즈의 설계)

  • Jang, Sun-Young;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • We present a new design for an endoscope objective lens composed of a lexible fiber bundle with 30,000 core, and a gradient-index (GRIN) objective lens with an optical adaptor. The characteristic of this objective lens is to be minimally-invasive to be able to insert easily in the internal organs of live animals. The GRIN lens has a small diameter and a very simple construction, which is selected with the diameter of 1.0 mm and numerical aperture of 0.5 to achieve a minimally-invasive outer diameter and a high resolution. The resultant designed lens shows the performance as follows; a lateral resolution of 1.63 um and diameters of 100% encircled energy of $0.3\;{\mu}m$ and $0.83\;{\mu}m$ for the on-axis and the off-axis image point, respectively. Also, we can present a cheap solution with a lateral resolution of 1.74 um and diameters of 100% encircled energy of $1.10\;{\mu}m$ and $2.84\;{\mu}m$ for the on-axis and the off-axis image point, respectively.

Optical Design of a Subminiature Catadioptric Omnidirectional Optical System with an LED Illumination System for a Capsule Endoscope (LED 조명계를 결합한 캡슐내시경용 초소형 반사굴절식 전방위 광학계의 설계)

  • Moon, Tae Sung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.68-78
    • /
    • 2021
  • A subminiature catadioptric omnidirectional optical system (SCOOS) with 2 mirrors, 6 plastic aspherical lenses, and an illumination system of 6 light emitting diodes, to observe the 360° panoramic image of the inner intestine, is optically designed and evaluated for a capsule endoscope. The total length, overall length, half field of view (HFOV), and F-number of the SCOOS are 14.3 mm, 8.93 mm, 51°~120°, and 3.5, respectively. The optical system has a complementary metal-oxide-semiconductor sensor with 0.1 megapixels, and an illumination system of 6 light-emitting diodes (LEDs) with 0.25 lm to illuminate on the 360° side view of the intestine along the optical axis. As a result, the spatial frequency at the modulation transfer function (MTF) of 0.3, the depth of focus, and the cumulative probability of tolerance at the Nyquist frequency of 44 lp/mm and MTF of 0.3 of the optimized optical system are obtained as 130 lp/mm, -0.097 mm to +0.076 mm, and 90.5%, respectively. Additionally, the simulated illuminance of the LED illumination system at the inner surface of the intestine within HFOV, at a distance of 15.0 mm from the optical axis, is from a minimum of 315 lx to a maximum of 725 lx, which is a sufficient illumination and visibility.