• Title/Summary/Keyword: Endophytic bacterium

Search Result 23, Processing Time 0.031 seconds

Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper (식물근권에서 분리한 Pseudomonas fluorescens strain EP103에 의한 고추역병억제)

  • Kim, Tack-Soo;Dutta, Swarnalee;Lee, Se Won;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.422-428
    • /
    • 2014
  • Endophytic bacterial strains from root tissue of strawberry were screened for their efficacy in growth improvement and control of Phytophthora blight disease of chili pepper plant under greenhouse condition. Plants treated with the strain EP103, identified as Pseudomonas fluorescens, showed growth improvement in terms of fresh weight and root length compared to the untreated control and other endophytic strains. When challenged with Phytophthora capsici, there was significant reduction of disease in EP103 treated plants with an efficacy of 78.7%. There was no direct inhibition of the target pathogen by EP103 when tested under in vitro antibiosis assay. Analysis of differential expression of selected marker genes for induced systemic resistance (ISR) in plants treated with EP103 and challenged with P. capsici showed up-regulation of PR1 and PR10 pathogenesis-related (PR) proteins. PCR analysis showed that EP103 produced secondary metabolites such as pyoluteorin, pyrrolnitrin, hydrogen cyanide and orfamide A. This study indicated the potential of endophytic P. fluorescens strain EP103 as an efficient biocontrol agent against P. capsici in chili pepper plant.

Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals

  • Mongkolthanaruk, Wiyada
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1597-1604
    • /
    • 2012
  • Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

Analysis of Microbial Diversity in Nuruk Using PCR-DGGE (PCR-DGGE를 이용한 누룩에서의 미생물 다양성 분석)

  • Kwon, Seung-Jik;Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2012
  • Nuruk plays a significant role in the flavor and quality of Takju and Yakju, which are produced through saccharification and alcohol fermentation by various microorganisms. In this study, we identified microbial strains isolated from a plate count and PCR-denaturing gradient gel electrophoresis (DGGE) analysis targeting the 16S and 28S rRNA genes, in order to characterize bacterial and fungal diversity in Sansung Nuruk. The numbers of bacteria and fungi in Nuruk were $1.5{\times}10^9$ CFU/g and $2.2{\tims}10^8$ CFU/g, respectively. The 16S rRNA gene sequence indicated that the predominant bacteria in the isolates and PCR-DGGE profile of Nuruk were Kocuria spp., Pantoea spp., Lactobacillus spp., Pediococcus spp., Weissella spp., Staphylococcus spp., endophytic bacterium, uncultured Gamma-proteobacteria, uncultured Cyanobacteria, and Actinobacteria. Dominant bacteria from the PCR-DGGE profile were Pediococcous pentosaceus and uncultured Cyanobacteria. The 28S rRNA gene sequence indicated the predominant fungi in the isolates and PCR-DGGE profile to be Trichomonascus spp. Pichia spp., Torulaspora spp., Wickerhamomyces spp., Sacharomycopsis spp., Lichtheimia spp., Mucor spp., Rhizopus spp. Aspergillus spp., and Cladosporium spp. Dominant fungi from the PCR-DGGE profile were Pichia kudriavzevii and Aspergillus oryzae. The PCR-DGGE technique was used for the first time in this study to assess a microbial community in Nuruk and proved to be an effective protocol for profiling microbial diversity.

Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum (감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명)

  • Lee, Ji-Hyun;Seo, Mun-Won;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2012
  • In order to develop environment friendly fungicide for the control of citrus green mold (Penicillium digitatum) using endophytic bacteria, the 21 bacterial isolates were isolated from citrus leaves in seven different orchards in Jeju Province. Among the 21 bacterial isolates, 5 bacterial isolates presented antifungal activity against green mold pathogen P. digitatum. The CB3 isolate, which showed the most strong antagonistic effect, was selected through opposite culture against the pathogen. The rod-shaped, gram-positive bacterium CB3 was identified as Bacillus velezensis based on morphological, physiological characteristics, 16S rDNA, and gyr A gene sequence analysis. The isolate CB3 showed strong antifungal activity against two citrus postharvest pathogen P. digitatum. Citrus fruits were treated by wound inoculation with P. digitatum pathogen, and the control efficacy of CB3 culture broth was 66.7% ($1{\times}10^8$ cfu/ml). In conclusion, The stability of CB3 and its strong antifungal activity also lead us to believe that it has potential for application as an environment friendly biological control agent.

Sphingomonas abietis sp. nov., an Endophytic Bacterium Isolated from Korean Fir

  • Lingmin Jiang;Hanna Choe;Yuxin Peng;Doeun Jeon;Donghyun Cho;Yue Jiang;Ju Huck Lee;Cha Young Kim;Jiyoung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1292-1298
    • /
    • 2023
  • PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20℃, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).

Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

  • Chung, Eu Jin;Hossain, Mohammad Tofajjal;Khan, Ajmal;Kim, Kyung Hyun;Jeon, Che Ok;Chung, Young Ryun
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.152-164
    • /
    • 2015
  • Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and $YC7010^T$, with antimicrobial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension ($10^7cfu/ml$) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC $15859^T$ (99.67%), Bacillus methylotrophicus KACC $13105^T$ (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC $17177^T$ (99.60%), and Bacillus tequilensis KACC $15944^T$ (99.45%). The DNA-DNA relatedness value between strain $YC7010^T$ and the most closely related strain, B. siamensis KACC $15859^T$ was $50.4{\pm}3.5%$, but it was $91.5{\pm}11.0%$ between two strains YC7007 and $YC7010^T$, indicating the same species. The major fatty acids of two strains were anteiso-$C_{15:0}$ and iso $C_{15:0}$. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC7007 and $YC7010^T$ represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is $YC7010^T$ (= KACC $18228^T$). Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases.

Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens (인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과)

  • Kim, Dohyun;Li, Taiying;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Ginseng is an important medicinal plant cultivated in East Asia for thousands of years. It is typically cultivated in the same field for 4 to 6 years and is exposed to a variety of pathogens. Among them, ginseng root rot is the main reason that leads to the most severe losses. In this study, endophytic bacteria were isolated from healthy ginseng, and endophytes with antagonistic effect against ginseng root rot pathogens were screened out. Among the 17 strains, three carried antagonistic effect, and were resistant to radicicol that is a mycotoxin produced by ginseng root rot pathogens. Finally, Bacillus velezensis CH-15 was selected due to excellent antagonistic effect and radicicol resistance. When CH-15 was inoculated on ginseng root, it not only inhibited the mycelial growth of the pathogen, but also inhibited the progression of disease. CH-15 also carried biosynthetic genes for bacillomycin D, iturin A, bacilysin, and surfactin. In addition, CH-15 culture filtrate significantly inhibited the growth and conidial germination of pathogens. This study shows that endophytic bacterium CH-15 had antagonistic effect on ginseng root rot pathogens and inhibited the progression of ginseng root rot. We expected that this strain can be a microbial agent to suppress ginseng root rot.

Screening of Endophytic Antagonistic Bacterium from Phellodendron amurense and Their Biocontrol Effects against Canker Rot

  • Li, Shujiang;Fang, Xinmei;Zhang, Hanlian;Zeng, Yanling;Zhu, Tianhui
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.234-242
    • /
    • 2019
  • Thirty-four strains of bacteria were isolated from Phellodendron amurense. Using Nectria haematococca as an indicator strain, the best strain, B18, was obtained by the growth rate method. The morphological, physiological and biochemical characteristics of strain B18 and its 16S DNA gene sequence were identified, and the biocontrol effect of strain B18 was assessed in pot and field tests, as well as in a field-control test. Drilling methods were used to determine the antibacterial activity of metabolites from strain B18 and their effects on the growth of pathogen mycelia and spores. The best bacteriostatic rate was 85.4%. B18 can hydrolyse starch and oxidize glucose but does not produce gas; a positive result was obtained in a gelatine liquefaction test. According to 16S DNA gene sequencing, strain B18 is Bacillus methylotrophicus (GenBank accession number: MG457759). The results of pot and field-control trials showed 98% disease control when inoculating $10^8cfu/ml$ of the strain. The disease control effect of the B18 culture liquid (concentrations of $10^8$, $2{\times}10^6$, $10^6$, $5{\times}10^5$ and $2.5{\times}10^5cfu/ml$) in the field-control test was higher than 80%, and the cure rate of the original delivery solution was 96%. Therefore, in the practical forestry production, a $2.5{\times}10^5cfu/ml$ culture liquidshould be applied in advance to achieve good control effects.

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

Nodulation Experiment by Cross-Inoculation of Nitrogen-Fixing Bacteria Isolated from Root Nodules of Several Leguminous Plants

  • Ahyeon Cho;Alpana Joshi;Hor-Gil Hur;Ji-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.570-579
    • /
    • 2024
  • Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.